CONTREX

CX - 1102
 MAIN MENU

SETUP

SCALING
SETPOINTS \& RAMPS
TUNING
CX-1102
PLC

Contrane
0001-0134 Rev A

Technical Assistance

If you have comments or questions concerning the operation of the CX-1102, a member of our Technical Support Staff will be happy to assist you. Ask for Technical Support:
763.424.7800 or 1.800.342.4411

Contrex ${ }^{\text {® }}$

8900 Zachary Lane North Maple Grove, Minnesota 55369 USA

Phone:763.424.7800
Fax:763.424.8734
www.contrexinc.com
info@contrexinc.com

DANGER

Improper installation can cause severe injury, death or damage to your system.

Integrate this motion control unit into your system with caution.

Comply with the National Electrical Code and all applicable local and national codes.

Table of Contents

Introduction 1-1
Introducing the CX-1102 1-3
Examples of CX-1102 Applications 1-4
Installation/Setup 2-1
Configuration 2-3
Mounting 2-7
Wiring 2-9
Inputs 2-10
Outputs 2-19
Serial Communications 2-22
DeviceNet Card (Optional) 2-25
Logic Control 2-27
Operator Interface 3-1
Keypad Operation 3-3
Screen Operation 3-5
Drive Setup/Calibration 4-1
Calibration 4-3
Creep Calibration 4-15
Analog Calibration 4-16
System Setup/Control Parameters 5-1
Introduction to Control Parameters 5-3
Setup 5-5
Status Screen Setup P1/1 5-6
Load \& Save Parms P1/1 5-7
Remote Scroll Setup P1/1 5-8
Keypad Lockout Setup P1/2 5-9
Keypad Lockout Setup P2/2 5-10
Serial Com SetuP P1/1 5-11
DeviceNet Setup P1/2 5-12
DeviceNet Setup P2/2 5-13
Video Setup P1/1 5-14
Alarm Indicator Mask P1/1 5-15
Scaling 5-17
Standard Signals 5-19
Unwind/Unwind FeedBack P1/2 5-20
Unwind / Unwind Control Output P2/2 5-21
Wind/Wind FeedBack P1/2 5-22
Wind / Wind Control Output P2/2 5-23
Analog Signals 5-25
Dancer / Dancer Input P1/1 5-26
Dancer Content Measurement 5-27
Ext Line Speed / Ext Line Speed Input P1/1 5-28
Diameters P1/1 5-29
Setpoints and Ramps 5-31
Run Applications 5-32
Line Speed 5-33
Line Speed P1/1 5-34
Dancer Setup P1/1 5-35
Run Ramps 5-36
Run Ramps P 1/1 5-37
H-Stop Ramp P1/1 5-38
Stretch P1/1 5-40
Jog Sp \& Ramps P1/1 5-42
Direct SP \& Ramps 5-43
Direct SP \& Ramps P1/1 5-44
Tuning 5-46
Velocity Loop Unwind P1/3 5-52
Velocity Loop Wind P2/3 5-53
Velocity Loop P3/3 5-54
Feedforward Unwind P1/2 5-55
Feedforward Wind P2/2 5-56
Dancer Setup P1/1 5-57
Related Items P1/1 5-58
Alarms and Limits 5-60
Alarms 5-61
Standard P1/3 5-64
Custom P2/3 5-65
Custom P3/3 5-66
Limits P1/2 5-68
Limits P2/2 5-69
Block Setup 5-71
Edit Block Parms 5-74
Edit Block 0 through 7 5-78
Programmable Logic Controller (PLC) 5-83
PLC Monitor 5-101
PLC Monitor P1/4 5-102
PLC Monitor P2/4 5-103
PLC Monitor P3/4 5-104
PLC Monitor P4/4 5-105
PLC Timers 5-107
PLC Timers P1/1 5-108
PLC Counters 5-110
PLC Event Cntrs P1/1 5-111
PLC Data Copy P1/1 5-112
Digital I/O 5-114
Digital I/O P1/1 5-115
PLC Programming 5-116
System Monitoring/Monitor Parameters 6-1
Introduction toMonitor Parameters 6-3
System Monitor 6-5
Run Monitor / System P1/3 6-6
Run Monitor / Unwind P2/3 6-7
Run Monitor / Wind P3/3 6-8
STD Signal Monitor / Unwind P1/3 6-9
STD Signal Monitor / Wind P2/3 6-10
STD Signal Monitor / Control Outputs P3/3 6-11
Alarms \& Limits / Active Alarms P1/2 6-12
Alarms and Limits P2/2 6-14
DIG I/O Monitor P1/1 6-15
Analog In Monitor P1/1 6-16
Control Overrides / State P1/4 6-17
Control Overrides P2/4 6-18
Control Overrides P3/4 6-19
Control Overrides P4/4 6-20
Serial Communications 7-1
Introduction to Serial Communications 7-3
CX-1102 Serial Communications ASCII Data-Link Protocol 7-4
CX-1102 Serial Communications ASCII2 Data-Link Protocol 7-17
CX-1102 Serial Communications Binary Data-Link Protocol 7-35
Troubleshooting/Diagnostics 8-1
Device Tests 8-3
Hardware Tests / Memory P1/3 8-4
Hardware Tests / Keypad P2/3 8-5
Hardware Tests / Video P3/3 8-6
Std Signal Tests 8-8
Std Signal Tests / Frequency Inputs P1/2 8-9
Std Signal Tests / Control Output P2/2 8-10
Digital I/O Test P1/1 8-11
Analog Input Tests 8-14
Analog Input Tests P1/2 8-16
Analog Input Tests / Calibration P2/2 8-17
Serial Communications Test P1/2 8-18
Serial Comm Test / Message Display P2/2 8-19
Device Status P1/2 8-20
Device Status P2/2 8-21
Device Model \& Revision P1/1 8-22
Troubleshooting 8-24
Parameter Load at Power-Up 8-31
EEPROM chip Replacement 8-33
Appendices A-1
Appendix A: CX-1102 Specifications A-3
Appendix B: Formulas B-1
Appendix C: Parameter Summary Numeric Quick Reference C-1
Appendix D: Control Parameter Reference D-1
Appendix E: Monitor Parameter Reference E-1
Appendix F: Control Parameter Screen Locator F-1
Appendix G: Monitor Parameter Screen Locator G-1
Appendix H: Error Code Definitions H-1
Appendix I: Serial Communications Error Code Definitions I-1
Appendix J: PLC Default Program Logic J-1
Appendix K: PLC Program Commands K-1
Appendix L: PLC Program Operands L-1
Appendix M: Wiring Diagram Examples M-1
Appendix N: Fax Cover Sheet N-1
Appendix O: Revision Log O-1
IndexIndex-1
Warranty/ServiceWarranty-1
Service Policy Warranty-3
Warranty Warranty-4

Introduction

Introducing the CX-1102
Examples of CX-1102 Applications

INTRODUCING THE CX-1102

The CX-1102 is a Dual Axis Controller for Unwind/Dancer/Wind applications. It is specifically designed for the web handling industries. It has pre-engineered algorithms for most of the popular machine configurations.

Powered unwinds and powered rewinds are controlled from axle mounted motors, (center driven), and axle mounted encoders. The controller does NOT require surface sensing encoders, therefore simplifying machine design. It will calculate the diameters automatically, and then determine the proper RPM speed of the axles to achieve the desired constant surface speed.

Since both ends of the machine are controlled from a single CX-1102, the operation is smooth and coordinated. Automatic coordinated dancer load-up, run, stop, live zero state, and dancer unload sequences are all available. Line speed is automatically rolled back if a small diameter roll can not keep pace. Line Speed commands can be bipolar, or forward/reverse. Dual output, separately isolated drive command signals work with AC/DC/Regen/Vector/Servo motor and drive combinations (or brake controller).

More than just a speed controller, the CX-1102 has a built-in PLC to customize operations. Information about roll diameters, dancer position, totalized roll content, alarms, comparators, timers, and counters all add capability to get the best overall system performance for your machine. Use of a moving dancer, instead of load cells, improves stability. Automatic diameter calculations help keep the dancer at its desired mid-range position. Web tension must be controlled with external systems by adjusting the dancer force.

Pre-engineered application configurations allow for two variable diameters (re-spooling), or other machine combinations including fixed diameter nip rolls or process rolls. Unwinds could be motor powered, or brake controlled. Dancer signals can be full, or partial voltage range, including bipolar. Line speed command can be digital, or remote analog. It could also derive from an externally controlled master motor encoder if the CX-1102 is in a single axis configuration. The CX-1102 has easy selection for overwrap vs. underwrap web paths. Dancer can trim the speed of your choice, either the unwind or wind station.

Easy setup uses a built-in polarity learning sequence, plus prompted data entry screens for operator input. Help screens, application specific parameter labels, and rear wiring terminal labels enhance the installation and operation procedures.

Industry sectors include paper, film, and foil conversion; wire and cable; extruded sheet, hose and tubing; fiberant textiles; non-wovens; slitters, die cutters, and embossers; re-spooling and inspection stations; printers and coaters.

EXAMPLES OF CX-1102 APPLICATIONS

The CX-1102 accommodates a wide range of configurations. The universal motor speed control provides digital control to virtually any drive. It accepts quadrature encoders, plus dancer and line speed analog inputs.

Control both axis, Dancer trims Unwind With Variable Diameters

Installation/Setup

Configuration
Mounting
Wiring
Inputs
Outputs
Serial Communications
DeviceNet (Optional)
Logic Control

CONFIGURATION

This section will show you how to re-configure the CX-1102 for electrical compatibility. Complete this procedure prior to installation. This procedure does not require power to complete.

The area that is involved in re-configuring the CX-1102 is the AC Power Input Voltage switch. This switch is located in an external location on the CX-1102. You will not be required to access the interior of the CX-1102.

Figure 2-1 (page 2-5) illustrates the location of this switch.

! WARNING

You will damage the CX-1102 if you apply 230 VAC to the AC Power input while the AC Power Input Voltage switch is in the 115 V position.

The AC Power Input Voltage switch is located on the rear of the CX-1102. The default configuration for the AC Power Input Voltage switch is 115 VAC.

To re-configure for 230 VAC Input, move the switch from the 115 V position (up) to the 230 V position (down).

Figure 2-1 AC Power Input Voltage Switch

* From the rear of the door panel to the back of the connectors

Figure 2-2 CX-1102 Cutout Dimensions and Mounting Guide

MOUNTING

This section contains instructions for mounting the CX-1102 in the door panel of an industrial electrical enclosure. The CX-1102 is packaged in a compact $1 / 2$ DIN vertical instrument enclosure that mounts easily in the door of your industrial electrical enclosure. The CX-1102 meets the NEMA 4 and the IP65 standards. To ensure compliance with these standards, enclose the CX-1102 in a Nema 4 or IP65 industrial electrical enclosure.

To mount the CX-1102:

1) The industrial electrical enclosure that will house the CX-1102 must conform to the following environmental conditions:

Temperature: 0-55 degrees C
(Internal enclosure temperature)
Humidity: 0-95\% RH non-condensing
Environment: Pollution degree 2 macro - environment
Altitude: To 3300 feet (1000 meters)
2) The dimensions for the door panel cutout are $3.65^{\prime \prime} \pm .03^{\prime \prime} \times 7.25 \pm .03^{\prime \prime}(9.27 \times 18.41 \mathrm{~cm})$. See figure 2-2. Allow two inches of clearance on both sides of the cutout and four inches of clearance on the top and bottom of the cutout for mounting clamp attachments, wire routing and heat convection.
3) Insert the CX-1102 through the door panel cutout until the gasket and bezel are flush with the door panel (see figure 2-2).
4) Slide the two mounting clamp bars into the slots that are located on either side of the CX-1102. See figure 2-2. Tighten the mounting screws until the CX-1102 is mounted securely in the electrical enclosure. Do not overtighten.

* Power for frequency input sensors may be supplied by J5, pin 1.

Total current should not exceed 150 mA .

Figure 2-3 CX-1102 General Wiring

WIRING

This section contains the input, output and serial communications wiring information for the CX-1102. Please read this section prior to wiring the CX-1102 to ensure that you make the appropriate wiring decisions.

NOTE: The installation of this motor control must conform to area and local electrical codes. See The National Electrical Code (NEC,) Article 430 published by the National Fire Protection Association, or The Canadian Electrical Code (CEC). Use local codes as applicable

Use a minimum wire gauge of 18 AWG.
Use shielded cable to minimize equipment malfunctions from electrical noise and terminate the shields at the receiving end only.

Keep the AC power wiring (J4) physically separated from all other wiring on the CX-1102. Failure to do so could result in additional electrical noise and cause the CX-1102 to malfunction.

Inductive coils on relay, contactors, solenoids that are on the same AC power line or housed in the same enclosure should be suppressed with an RC network across the coil.

A hand operated supply disconnect device must be installed in the final application. The primary disconnect device must meet EN requirements.

Install an AC line filter or isolation transformer to reduce excessive EMI noise, such as line notches or spikes, on the AC power line.

INPUTS

NOTE: The installation of this motor control must conform to area and local electrical codes. Refer to page 2-9 before you begin wiring.

AC Power Input

(J4 pins 1, 2,3)
The CX-1102 operates on either a 115 VAC - 10\% + $15 \%, 0.250$ Amp., $50 / 60 \mathrm{~Hz}$ or a 230 VAC $-10 \%+15 \%$, $0.125 \mathrm{Amp}, 50 / 60 \mathrm{~Hz}$. Use the separate 3 pin connector (J4) for the power connection.

* Fuse L1 for 115 VAC applications. Fuse L1 and L2 for 230 VAC applications. Use 1 Amp 250 normal blow fuses.

Figure 2-4 AC Power Input

WARNING

You will damage the CX-1102 if you apply 230 VAC to the AC Power input when the AC Power Input Voltage switch is in the 115 V position.

Unwind Frequency

(J5 pins 1, 2, 4, 5, 6)

The wiring for the Unwind Frequency is determined by the sensor. Figures 2-5 and 2-6 illustrate the wiring for the various sensors. For signal level and performance specifications, refer to Appendices: Appendix A.

Figure 2-5 Unwind Frequency Quadrature Differential Sensor (Bidirectional)

Figure 2-6 Unwind Frequency Quadrature Single-Ended Sensor (Bidirectional)

Wind Frequency

(J5 pins 1, 7, 8, 9, 10, 11)

The wiring for Wind Frequency is determined by the sensor. Figures 2-7 and 2-8 illustrate the wiring for the various sensors. For signal level and performance specifications refer to Appendices: Appendix A.

Figure 2-7 Wind Frequency Quadrature Differential Sensor (Bidirectional)

Figure 2-8 Wind Frequency Quadrature Single-Ended Sensor (Bidirectional)

F-Stop

(J6 pins 1,3)

F-Stop is a momentary input. When it is opened, the CX-1102 commands a zero speed immediately and ignores the specified deceleration rate. However, F-Stop does not hold zero speed or position (drive disabled). As a momentary input, F-Stop is internally latched and does not need to be maintained open by an operator device.

Figure 2-9 F-Stop

Unload

(J6 pins 2, 3)

When the Unload input (J6, pin 2) is momentarily opened, the CX-1102 enters the Unload state. As a momentary input, Unload is internally latched and does not need to be maintained open by an operator device.

Figure 2-10 Unload

Figure 2-11 H-Stop

Load

 (J6 pins 5, 3)When the Load input ($\mathrm{J} 6, \mathrm{pin} 5$) is momentarily shorted to common, the CX-1102 enters the Load state. As a momentary input, Load is internally latched and does not need to be maintained closed by an operator device.

NOTE: Close the H-Stop, Unload and F-Stop inputs prior to entering the Load state. If you are only using one of the Stop inputs, wire short the other Stop inputs to the common or the CX-1102 will not enter load.

Figure 2-12 Load

Figure 2-13 Run

Figure 2-14 Spare

Keypad Lockout

(J6 pins 9, 8)

When the KEYPAD LOCKOUT input is closed, the Control Parameters that you have selected to "lockout" are inaccessible from the front keypad. All of the Monitor Parameters remain enabled.

The Keypad Lockout input is temporally used during the system setup procedure to initiate tests for the CX1102 system setup procedure.

Setup

(J6 pins 10, 8)

Setup is a maintained input. It is used only during the system setup procedure to put the CX-1102 into "Setup State".

Figure 2-15 Keypad Lockout

Figure 2-16 Setup

Unwind Jog Forward
 (J7 pins 1, 3)

Unwind Jog Forward is a maintained input. When it is closed, it sends a forward unwind control output signal to the drive at the selected Jog Setpoint. As a maintained input, Unwind Jog Forward is only active when the operator device is closed.

NOTE: Close the H-Stop, Unload and F-Stop inputs prior to entering the Jog state. If you are only using one of the Stop inputs, wire short the other Stop inputs to the common or the CX-1102 will not enter Jog.

Figure 2-17 Unwind Jog Forward

Unwind Jog Reverse
 (J7 pins 2, 3)

Unwind Jog Reverse is a maintained input. When it is closed, it sends a reverse unwind control output signal to the drive at the selected Jog Setpoint. As a maintained input, Unwind Jog Reverse is only active when the operator device is closed.

NOTE: Close the H-Stop, Unload and F-Stop inputs prior to entering the Jog state. If you are only using one of the Stop inputs, wire short the other Stop inputs to the common or the CX-1102 will not enter Jog.

Wind Jog Forward (J7 pins 4, 3)

Wind Jog Forward is a maintained input. When it is closed, it sends a forward wind control output signal to the drive at the selected Jog Setpoint. As a maintained input, Wind Jog Forward is only active when the operator device is closed.

NOTE: Close the H-Stop, Unload and F-Stop inputs prior to entering the Jog state. If you are only using one of the Stop inputs, wire short the other Stop inputs to the common or the CX-1102 will not enter Jog.

Figure 2-19 Wind Jog Forward

Wind Jog Reverse

 (J7 pins 2, 3)Wind Jog Reverse is a maintained input. When it is closed, it sends a reverse wind control output signal to the drive at the selected Jog Setpoint. As a maintained input, Wind Jog Reverse is only active when the operator device is closed.

NOTE: Close the H-Stop, Unload and F-Stop inputs prior to entering the Jog state. If you are only using one of the Stop inputs, wire short the other Stop inputs to the common or the CX-1102 will not enter Jog.

Figure 2-20 Wind Jog Reverse

Unwind Under Wrap

(J7 pins 6, 8)

When the Unwind Under Wrap input is closed, then the unwind axle has web material fed off the roll from the bottom rather than the top of the roll.

Line Speed Reverse

(J7 pins 9, 8)

When the Line Speed Reverse input is closed, the Line Speed command is negated to be oppsite the Line Speed Setpoint.

Figure 2-21 Unwind Under Wrap

Figure 2-22 Wind Under Wrap

Figure 2-23 Line Speed Reverse

Web Reset

 (J7 pins 10, 8)Web Reset is a maintained input. When it is closed. As a maintained input, Web Reset is only active when the operator device is closed.

Figure 2-24 Web Reset

Dancer

(JA, Pins 1, 2, 4)
The Dancer Input can be used with a potentiometer (e.g., dancer pot).

* The total current from JA pin 1 and J5 pin 1 (+5V_Aux) must not exceed 150 mA .

Figure 2-25 Dancer Input

Ext Line Speed Potentiometer
 (JA, Pins 1, 3, 4)

The Ext Line Speed Input can be used with a potentiometer (e.g., line speed pot).

* The total current from JA pin 1 and J5 pin 1 (+5V_Aux) must not exceed 150 mA

Figure 2-26 Line Speed Potentiometer

OUTPUTS

NOTE: The installation of this motor control must conform to area and local electrical codes. Refer to page 2-9 before you begin wiring.

Unwind Control Output (J8 pins 1, 2)

Unwind Control Output is an isolated analog output signal that is sent to the motor drive to control the speed of the motor. Wire the Unwind Control Output into the speed signal input of the drive. If the motor drive has a potentiometer speed control, remove the potentiometer connections and wire the Unwind Control Output to the potentiometer wiper point. The CX-1102's Isolated Common should always be connected to the drive common.

Wind Control Output (J3 pins 1, 2)

Wind Control Output is an isolated analog output signal that is sent to the motor drive to control the speed of the motor. Wire the Wind Control Output into the speed signal input of the drive. If the motor drive has a potentiometer speed control, remove the potentiometer connections and wire the Wind Control Output to the potentiometer wiper point. The CX1102's Isolated Common should always be connected to the drive common.

Figure 2-27 Unwind Control Output

Figure 2-28 Wind Control Output

NOTE: All Digital Outputs are activated via the PLC and so are subject to the active PLC program.

Unwind Enable
 (J2 pin 2)

The Unwind Enable output is activated (driven low) when the CX-1102 signals a run command to the motor drive. The Unwind Enable output is driven high (relay deactivated) after Power Up and at the completion of F-Stop. See Figure 2-29.

Wind Enable

(J2 pin 3)
The Wind Enable output is activated (driven low) when the CX-1102 signals a run command to the motor drive. The Wind Enable output is driven high (relay deactivated) after Power Up and at the completion of F-Stop. See Figure 2-29.

Unwind Error
 (J2 pin 4)

The Unwind Error output is activated (driven low) when UwndRR Err (MP-22) is greater than E 200 RPM. See Figure 2-29.

Wind Error

(J2 pin 5)
The Wind Error output is activated (driven low) when WindRR Err (MP-32) is greater than E 200 RPM. See Figure 2-29.

Wind Roll Full (J2 pin 6)

The Wind Roll Full output is activated (driven low) when WindEstDia (MP-17) is greater than or equal to 72 (Diameter EU). See Figure 2-29.

Dancer

(J2 pin 7)
The Dancer output is activated (driven low) when the dancer content is greater than or equal to 95% of DncrCtntFull (CP-272) or less than or equal to 5\% of DncrCtntFull (CP-272). See Figure 2-29.

Web Break

(J2 pin 8)
The Web Break output is activated (driven low) when the dancer content is greater than or equal to 95% of DncrCtntFull (CP-272) and LineSpdRRef (MP-42) is greater than zero and the non-Dancer Trimmed Roll is rotaing at a speed greater than Zero Speed (CP-370). See Figure 2-29.

Spare

(J2 pin 9)
The Spare output is activated (driven low) when the dancer content is within a band that is $\mathrm{E} 5 \%$ of DncrCtntFull (CP-272) above or below the Dancer SP (CP-250). See Figure 2-29.

NOTE: The Digital Outputs are open-collector relay drivers. For specification details, see Appendices: Appendix A. Use an external DC power supply to power the relays. Free-wheeling diodes are incorporated internally in the CX-1102 and do not need to be added externally.

Figure 2-29 CX-1102 Digital Outputs

SERIAL COMMUNICATIONS

NOTE: The installation of this motor control must conform to area and local electrical codes. Refer to page 2-9 before you begin wiring.

The Serial Communications interface on the CX-1102 complies with EIA Standard RS-485-A for balanced line transmissions. This interface allows the host computer to perform remote computer parameter entry, status or performance monitoring, and remote control of the CX-1102. See Serial Communications for information on using Serial Communications.

Figures 2-30 and 2-31 illustrate a multidrop installation of the Serial Communications link and Serial Communications connections.

Figure 2-30 CX-1102 Multidrop Installation

1. Shield only at one end of the cable.
2. If you need to terminate the communication line, then terminate it at the unit which is the furthest away from the converter. A 100 ohm, 1/2 Watt resistor will usually terminate successfully. Refer to EIA Standard RS-485A, for more information.

Figure 2-31 CX-1102 Serial Communications Connections
—NOTES-

DEVICENET CARD (OPTIONAL)

For the installation, wiring and operation of the optional DeviceNet card, refer to the CX-Series DeviceNet Card Technical Manual, \# 0001-0134.
-NOTES-

LOGIC CONTROL

This section addresses the seven digital inputs that control the CX-1102's operating state. The seven digital inputs (listed by priority) are:

> F-Stop
> Unload
> H-Stop
> Run
> Load
> Jog Forward (Unwind and Wind)
> Jog Reverse (Unwind and Wind)

When the CX-1102 is powered up, it defaults to F-Stop. Run is terminated by activating F-Stop, Unload or H-Stop. The operating state changes to the input that terminated Run, provided that another input is not subsequently activated. Jog Forward or Jog Reverse are terminated by deactivating the Jog Forward or Jog Reverse inputs. Jog Forward or Jog Reverse can also be terminated by activating F-Stop or H-Stop. The operating state automatically changes to F-Stop or H-Stop after the Jog deceleration ramp is completed. You can not enter Run from Jog with the Jog inputs active. However, you can enter Run during a deceleration from Jog after the Jog input is deactivated. You can not enter Jog Forward or Jog Reverse from Run. If two or more inputs become active at the same time, the input with the highest priority will dictate the operating state.

The sections that follow demonstrate how to use the digital inputs.

Logic Inputs

F-Stop (Fast Stop) has priority over the other operating states. F-Stop forces the Control Output SigU and SigW signals to " 0 " volts and monitors the feedback. When the feedback is less than the Zero Speed (CP370), the UwndDrvEn (PLC bit 41) and WindDrvEn (PLC bit 51) resets to " 0 ". This PLC bit is routed by the PLC program to an output that disables the drive. If the feedback does not reach Zero Speed within $1 / 2$ second, the UwndDrvEn (PLC bit 41) and WindDrvEn (PLC bit 51)automatically resets to " 0 ". The integral, trim and feedforward are also set to " 0 ".

To activate F-Stop:

- Activate High (Open), Level Sensitive, Latched
- Wire to F-Stop interconnect
- Use momentary contact - does not need to be maintained to remain active

Figure 2-32 F-Stop Input

Unload has the fourth highest operating priority. Only from Run, H-Stop, Load, or F-Stop states, but not from Direct Setpoint Application. Normal operation is from H-Stop with the dancer loaded. If Unload is requested from Run, the roll(s) ramp to zero speed before starting the Unload sequence below. Unload has a ten second (10s) timer. If the Dancer is not unloaded within 10 seconds after the Unload input is latched, the CX-1102 automatically reverts to the F-Stop operating state. The Unload input may be held open to keep the CX-1102 from changing to F-Stop and therefore complete the Unload.

To activate Unload:

- Activate High (Open), Level Sensitive, Latched
- Use momentary contact - does not need to be maintained to remain active

Open Momentarily

Figure 2-33 Unload Input

App Select $(\mathbf{C P}-202)=1$: The CX-1102 controls both rolls with Dancer Trimmed Unwind

1) The unwind is a bipolar or a unipolar reversible or a unipolar drive:
a) The wind roll is put into H -Stop.
b) The unwind roll jogs forward until the dancer is in the Full position.
c) The unwind roll goes into Jog Stop until the unwind roll stops.
d) Then the unwind roll transitions to F-Stop.
e) The wind roll transitions to F-Stop.
f) The system state transitions to F-Stop State.
2) The unwind is a unipolar brake and the wind is bipolar or unipolar reversible:
a) The unwind roll is put into H -Stop.
b) The wind roll jogs in reverse until the dancer is in the Full position.
c) The wind roll goes into Jog Stop until the wind roll stops.
d) Then the unwind roll transitions to F-stop.
e) The wind roll transitions to F-Stop.
f) The system state transitions to F-Stop State.
3) The unwind is a unipolar brake and the wind is unipolar:
a) The wind roll is put into F-Stop.
b) The unwind roll is put into F-Stop.
c) The system state transitions to F-Stop State.

App Select $(\mathbf{C P}-202)=2$: The CX-1102 controls both rolls with Dancer Trimmed Wind

1) The wind is a bipolar or a unipolar reversible drive:
a) The unwind roll is put into H -Stop.
b) The wind roll jogs in reverse until the dancer is in the Full position.
c) The wind roll goes into Jog Stop until the wind roll stops.
d) Then the wind roll transitions to F-Stop.
e) The unwind roll transitions to F-Stop.
f) The system state transitions to F-Stop State.
2) The wind is a unipolar drive:
a) The wind roll is put into H -Stop.
b) The unwind roll jogs forward until the dancer is in the Full position.
c) The unwind roll goes into Jog Stop until the unwind roll stops.
d) Then the unwind roll transitions to F-Stop.
e) The wind roll transitions to F-Stop.
f) The system state transitions to F-Stop State.
3) The wind is a unipolar drive and the unwind is a unipolar brake:
a) The wind roll is put into F-Stop.
b) The unwind roll is put into F-Stop.
c) The system state transitions to F-Stop State.

App Select $(\mathbf{C P}-202)=3$: The CX-1102 controls only the Dancer Trimmed Unwind roll

1) The unwind is a bipolar or a unipolar reversible or a unipolar drive:
a) The unwind roll jogs forward until the dancer is in the Full position.
b) The unwind roll goes into Jog Stop until the unwind roll stops.
c) Then the unwind roll transitions to F-Stop.
d) The system state transitions to F-Stop State.
2) The unwind is a unipolar brake and the wind is bipolar or unipolar reversible:
a) The unwind roll is put into H -Stop.
b) The unwind roll waits until the dancer is in the Full position.
c) Then the unwind roll transitions to F-stop.
d) The system state transitions to F-Stop State.
3) The unwind is a unipolar brake and the wind is unipolar:
a) The unwind roll is put into F-Stop.
b) The system state transitions to F-Stop State.

App Select $(\mathbf{C P}-202)=4$: The CX-1102 controls only the Dancer Trimmed Wind roll

1) The wind is a bipolar or a unipolar reversible drive:
a) The wind roll jogs in reverse until the dancer is in the Full position.
b) The wind roll goes into Jog Stop until the wind roll stops.
c) Then the wind roll transitions to F-Stop.
d) The system state transitions to F-Stop State.
2) The wind is a unipolar drive:
a) The wind roll is put into H-Stop.
b) The wind roll waits until the dancer is in the Full position.
c) Then the wind roll transitions to F-Stop.
d) The system state transitions to F-Stop State.
3) The wind is a unipolar drive and the unwind is a unipolar brake:
a) The wind roll is put into F-Stop.
b) The system state transitions to F-Stop State.

H-Stop (Stop and Hold) has the fifth highest operating priority. Use H-Stop to stop the drive with a deceleration ramp. The velocity command is ramped down to " 0 ". If the loop is "Closed", the ramp is executed with velocity loop control (with feedforward, and Trim). If the loop is "Open", the ramp will be executed with feedforward only. The deceleration rate for the ramp is determined by Dcl Tm HStp (CP-307) and Ref Ramps (CP-300) or by the Dcl Rt RStp (CP-308). When the velocity command reaches " 0 " and the feedback is less than the Zero Speed (CP-370), then H-Stop will; hold the Control Output (SigU/SigW) to " 0 " volts (Open Loop) or the dancer trimmed roll will hold the dancer in position near the Dancer SP (CP-250) (Closed Loop) and the non-dancer trimmed roll's position (Closed Loop position hold).

To activate H-Stop:

- Activate High (Open), Level Sensitive, Latched
- Use momentary contact - does not need to be maintained to remain active

Figure 2-34 H-Stop Input

Run has the sixth highest operating priority. Run is the primary operating state. App Select (CP-202) determines the operation for Run, using either the applications 1 through 4 or the direct mode. The corresponding setpoint for the selected mode determines the operating speed. The direct mode will only operate as open loop. The applications 1 through 4 will "Run" in closed loop.

With the exception of the direct mode, the acceleration and deceleration ramps for the modes of operation are determined by Acl Tm RUN, (CP-301), Dcl Tm RUN (CP-303) and Ref Ramps (CP-300). The direct mode ramps are determined by Acl Tm Drct (CP-311), Dcl Tm Drct (CP-312) and UwndCOMaxVolts (CP-281) and WindCOMaxVolts (CP-286).

To activate Run:

- Activate Low (closed to common), Level Sensitive, Latched
- Use momentary contact - does not need to be maintained to remain active

Figure 2-35 Run Input

Load has the seventh highest operating priority. Only from F-Stop or Unload states. Normal operation is from F-Stop with the dancer in the full position. Load can also be initiated from Unload state with positive Dancer Error. Load has a ten second (10s) timer. If the Dancer is not loaded within 10 seconds after the Load input is latched the CX-1102 automatically reverts to the F-Stop operating state. The Load input may be held closed to keep the CX-1102 from changing to F-Stop and therefore complete the Load. To activate Load:

- Activate Low (closed to common), Level Sensitive, Latched
- Use momentary contact - does not need to be maintained to remain active

Figure 2-36 Load Input

App Select $(\mathbf{C P}-202)=1$: The CX-1102 controls both rolls with Dancer Trimmed Unwind

1) If the unwind is a bipolar or a unipolar reversible drive:
a) The wind roll is put into H-Stop.
b) The unwind roll Jogs in reverse to pull material out of the dancer until the dancer error changes from positive to negative.
c) The unwind roll goes into Jog Stop until the unwind roll stops.
d) Then the unwind roll transitions to Run with Dancer Trim.
e) The wind roll remains in H-Stop.
f) The system state transitions to H -Stop State.
2) If the unwind is a unipolar drive or a unipolar brake:
a) The unwind roll is put into H-Stop.
b) The wind roll jogs forward to pull material out of the dancer until the dancer error changes from positive to negative.
c) The wind roll goes into Jog Stop until the wind roll stops.
d) Then the unwind roll transitions to Run with Dancer Trim.
e) The wind roll transitions to H-Stop.
f) The system state transitions to H -Stop State.

App Select $(\mathbf{C P}-202)=\mathbf{2}$: The CX-1102 controls both rolls with Dancer Trimmed Wind

1) If the wind is a bipolar or a unipolar reversible or a unipolar drive or a unipolar brake:
a) The unwind roll is put into H-Stop.
b) The wind roll jogs forward to pull material out of the dancer until the dancer error changes from positive to negative.
c) The wind roll goes into Jog Stop until the wind roll stops.
d) Then the wind roll transitions to Run with Dancer Trim.
e) The unwind roll remains in H-Stop.
f) The system state transitions to H -Stop State.

App Select $(\mathbf{C P}-202)=$ 3: The CX-1102 controls only the Dancer Trimmed Unwind roll

1) If the unwind is a bipolar or a unipolar reversible drive:
a) The unwind roll jogs in reverse to pull material out of the dancer until the dancer error changes from positive to negative.
b) The unwind roll goes into Jog Stop until the unwind roll stops.
c) Then the unwind roll transitions to Run with Dancer Trim.
d) The system state transitions to H -Stop State.
2) If the unwind is a unipolar drive or a unipolar brake:
a) The unwind roll is put into H-Stop.
b) The unwind roll waits until the dancer error changes from positive to negative.
c) Then the unwind roll transitions to Run with Dancer Trim.
d) The system state transitions to H-Stop State.

App Select $(\mathbf{C P}-202)=4$: The CX-1102 controls only the Dancer Trimmed Wind roll

1) If the wind is a bipolar or a unipolar reversible or a unipolar drive:
a) The wind roll jogs forward to pull material out of the dancer until the dancer error changes from positive to negative.
b) The wind roll goes into Jog Stop until the wind roll stops.
c) Then the wind roll transitions to Run with Dancer Trim.
d) The system state transitions to H-Stop State.

Jog Forward has the eighth highest operating priority. Use UJogF to "Jog" the unwind drive Forward or use WJogF to "Jog" the wind drive Forward at the rate indicated in Jog SP (CP-240). The acceleration and deceleration ramps are dictated by Acl Tm Jog (CP-241), Dcl Tm Jog (CP-243) and Jog SP (CP-240). After the UJogF or WJogF input is deactivated and the ramped reference has reached " 0 ", the CX-1102 automatically reverts to the F-Stop or H-Stop operating state.

To activate Jog Forward:

- Activate Low (closed to common), Level Sensitive, Not-Latched
- Use momentary contact - needs to be maintained to remain active

Figure 2-37 Jog Forward Input

Jog Reverse has nineth (the least) operating priority. Use UJogR to "Jog" the unwind drive Reverse or use WJogR to "Jog" the wind drive Reverse at the rate indicated in Jog SP (CP-240). The acceleration and deceleration ramps are dictated by Acl Tm Jog (CP-241), Dcl Tm Jog (CP-243) and Jog SP (CP-240). After the UJogR or WJogR input is deactivated and the ramped reference has reached " 0 ", the CX-1102 automatically reverts to the F-Stop or H-Stop operating state.

To activate Jog Reverse:

- Activate Low (closed to common), Level Sensitive, Not-Latched
- Use momentary contact - needs to be maintained to remain active

Figure 2-38 Jog Reverse Input
-NOTES-
-NOTES-

Operator Interface

Keypad Operation
Screen Operation

Figure 3-1 The CX-1102 Front Panel

KEYPAD OPERATION

The CX -1102 operates on a system of screens that are controlled by the front keypad. Figure 3-1 shows the location of the keys and LCD screen display on the front panel. You will find detailed descriptions of the interactions of the keys and screens throughout the "Operations" section. The following is a brief summary of how the front panel functions.

LCD Screen Display	The screens are displayed on the LCD Display.
Menu Key	The Menu key accesses the main menu from a sub-menu or status screen, and a sub- menu from a parameter screen.
Status Screen Key	The Status key will immediately pop-up the status screen from any other screen. To return to the previous screen, press the Status key again.
Page Up/Down Keys	Some screens have multiple pages. The Page Up/Down keys allow you to scroll through, one page at a time.
Numeric Keys	Use the Numeric keys to enter the Parameter Code of either a Control Parameter (CP) or a Monitor Parameter (MP) or to enter a Parameter Value for a Control Parameter. Use the Enter key to activate the entry. Use the Clear key to delete the entry and clear the Parameter Value to zero.
Parameter Up/Down KeysEach time you press the Parameter (Par) up key, the cursor and highlight bar will move up by one line. Each time you press the Parameter (Par) down key, the cursor will move down by one line. It will also automatically scroll through the lines if you hold the key down.	

Code Select Key Use the Code Select key in the Status screen and in the parameter screens to display a Parameter Code line. When the Parameter Code line appears, you can use it to access a parameter and its value. Enter a Parameter Code, then press the Enter key and the parameter and its value will be displayed. You can change a Control Parameter value by entering a new value or by scrolling with the Increment Up/Down keys. Use the Clear key to delete the entry and clear the parameter value to zero.

Help Screen Key
The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active). The Help screen also functions as an options screen, where you can select Control Parameter data. You can access help from any screen. Press the Help key again to return to the previous screen.

Increment Scroll Up/Down
Use these keys in the parameter screens to change the active value. Each time you press the Increment Scroll Up key, the active value will increase by one increment. Each time you press the Increment Scroll Down key, the active value will decrease by one decrement. It will also automatically scroll through the increments or decrements if you hold the key down.

Clear Key

Enter Key
Use the Clear key to delete a value or change which you have entered. However, the Clear key will not delete the entry or change once the Enter key has been used.

Use the Enter key to accept a value or change which you have entered.

Fig 3-2 Overview of the CX-1102 Screen Matrix

SCREEN OPERATION

The CX-1102 screen matrix has three main screens. These screens are:

Status Screen
Main Menu
Help Screen

There are nine sub-menus that are accessed through the Main Menu screen. These sub-menus are:

```
Setup
Scaling
Setpoints and Ramps
Tuning
Alarms and Limits
Blocks
PLC
System Monitor
Device Test
```

All of the parameter screens are accessed through these nine sub-menu screens. You can use the parameter screens to access the parameters. Parameters fall into two classifications; Control Parameters and Monitor Parameters. The Control Parameters allow you to enter data that is unique to you system. The Monitor Parameters allow you to monitor your system and diagnose problems.

This Screen Operation section is a basic overview of the three main screens; the Status screen, the Help screen and Main Menu screen. There is also a sample of a sub menu screen. For specific details on the parameter screens, refer to System Setup-Control Parameters and System Monitoring-Monitor Parameters. For the instructions to customize the Status screen, refer to System Setup-Control Parameters :Setup/Status Screen Setup.

Refer to Figure 3-2 for an overview of the CX-1102 screen matrix.

Status Screen

Press the Status key to access the Status screen. The Status screen has a large number display for a quick, visual reference to a frequently used parameter, as well as its value and E.U. (Scaled Feedback is the default parameter). Below the large number display, the Status screen lists six frequently used parameters. In addition to the frequently used parameters, the line at the bottom of the display, called the code select line, allows you to access and display any parameter and change any Control Parameter's value. The Status screen can be customized to reflect the parameters that you access most frequently. To customize the Status screen refer to System Setup-Control Parameters: Device Configure/Status Screen Setup.

Main Menu Screen

Press the Menu key to access the Main Menu screen. The Main Menu screen displays the nine sub-menus that access all of the parameter screens.

Sub-Menu Screen / Samples

Parameter screens are accessed through the sub-menu screens.

Help Screens

Press the Help key, to access the Help screens for an active (highlighted) Control Parameter line, an active Monitor Parameter line or an active menu line. You can access "Help" from any screen. To exit the Help screen and return to the previous screen, press the Help key again. In addition to the help information, the Help screens also function as an options screen. For more information on the help options, refer to "Help Screen / Sample Options" on the next page.

Help Screens / Sample Options

The Help screens also function as "options" screens where you can select a Control Parameter value. The last page of many Help screens (usually page 2) have parameter options that have three value lines; current value, backup value and default value. There are also Help screens that contain a list of options that you can scroll through and select. An asterisk next to an option indicates that it is the default value. See the samples below. To exit the Help screen and return to the previous screen, press the Help key again.

Drive Setup/Calibration

Calibration

CALIBRATION

This procedure is a series of steps designed to verify the motor/drive/encoder wiring and polarity, calibrate the dancer and setup some of the basic parameters necessary for proper operation of the CX-1102.

Before you begin this procedure, the motor and drive must be wired and configured in accordance with the manufacturer's instructions. Refer to your drive manual to assist you in making the following drive adjustments:

- \quad Set the acceleration and deceleration times to their fastest settings.
- \quad Set the IR compensation to its minimum setting.
- Set the Integral compensation to its minimum setting.
- Set the zero speed (balance) drive adjustment for zero creep. If there is still creep, then use the UwndCO Offset \{CP-283\} and/or WindCO Offset \{CP-288\} parameters to "offset" the creep. The CX-1102 needs to be in Direct Mode (App Select \{CP-202\} set to zero), with the UwndDirect SP \{CP-230\} and WindDirect SP \{CP-230\} set to zero and in "RUN" state.

The CX-1102 must be configured and installed in accordance with the installation procedures indicated in the Installation section of the CX-1102 Technical Reference Manual and the CX-1102, including its PLC, will be programmed as factory default.

NOTE: The Wind Under Wrap input MUST be shorted to common if the wind axle will have web material fed onto the roll from the bottom rather than the top of the roll. The Unwind Under Wrap input MUST be shorted to common if the unwind axle will have web material fed off of the roll from the bottom rather than the top of the roll.

NOTE: The Menu and Status keys will be disabled during the setup procedure. This is done in order to simplify the automatically displayed screen sequence used while performing the setup procedure.

NOTE: Unipolar drives should not be used unless there is a large gear reduction between the motor and the roll, because the unipolar drive can not provide reverse torque to hold the roll in position.

NOTE: The F-stop, Unload and H-Stop inputs are monitored during "Setup State". If any of these inputs are opened during a test the CX-1102 will immediately zero the Control Outputs and display "Failure" for the test in progress.

Setup consists of the following:

- Application Configuration
- Axis Configuration
- Wind Roll Setup
- Unwind Roll Setup
- Signal Polarity Test
- Dancer Calibration
- Wind Direction Test
- Unwind Direction Test

DANGER

Motion will occur in the calibration procedure. It is possible that sudden/violent motion could result and cause damage or personal injury. Make sure that the motor is secured in place. Take all possible precautions to ensure your safety.

Step 1 - Application Configuration - Parameter Entry

Close the "Setup" input. The CX-1102 will change to "Setup State" and will automatically display
System Setup Application\Page 1. Setup State \{MP-59\} will equal 0.

Configure the CP's on this screen as required.

System State \{MP-50\}
Setup State \{MP-59\}
App Select \{CP-202\}
UnitPrs Sel \{CP-208\}
Time Base \{CP-209\}
FixedDiaSel \{CP-207\}
UwndDiaPrst \{CP-364\}
WindDiaPrst \{CP-365\}

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

Press the "Page Down" key to proceed to the next step.

Step 2 - Axis Configuration - Parameter Entry

The CX-1102 will display System Setup Axis Configuration\Page 2.
Setup State \{MP-59\} will equal 1 (not displayed on this screen).

Configure the CP's on this screen as required.

WindCO Mode $\{\mathbf{C P}-285\}$
WindCO MaxVolts \{CP-286\}
Wind PPR \{CP-266\}
WindGearRden \{CP-265\}
Wind MaxRPM \{CP-329\}
UwndCO Mode \{CP-280\}
UwndCO MaxVolts \{CP-281\}
Unwind PPR \{CP-261\}
UwndGearRden \{CP-260\}
Uwnd MaxRPM \{CP-329\}

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

Press the "Page Down" key to proceed to the next step.

Step 3 - Wind Roll Setup - Parameter Entry

The CX-1102 will display System Setup Wind Roll\Page 3.
Setup State \{MP-59\} will equal 2.
Configure the CP's on this screen as required.
Setup State \{MP-59\}
FixedDiaSel \{CP-207\}
LoadDiaCalEn \{CP-361\}
WindMinDia \{CP-352\}
WindMaxDia \{CP-353\}
WindDiaPrst \{CP-365\}
WindCtntPrst \{CP-367\}
WindCtntRO \{CP-369\}
WindEstDia \{MP-17\}
WindEstCtnt $\{$ MP-16 $\}$

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

Press the "Page Down" key to proceed to the next step.

Step 4 - Unwind Roll Setup - Parameter Entry

The CX-1102 will display System Setup Unwind Roll\Page 4.
Setup State \{MP-59\} will equal 3.
Configure the CP's on this screen as required.
Setup State $\{$ MP-59 $\}$
FixedDiaSel \{CP-207\}
LoadDiaCalEn \{CP-361\}
UwndMinDia \{CP-350\}
UwndMaxDia \{CP-351\}
UwndDiaPrst \{CP-364\}
UwndCtntPrst $\{\mathbf{C P}-366\}$
UwndCtntRO \{CP-368\}
UwndEstDia \{MP-07\}
UwndEstCtnt \{MP-06\}
NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

Press the "Page Down" key to proceed to the next step.

Step 5 - Signal Polarity Test

The CX-1102 will display System Setup Signal Polarity\Page 5. Setup State \{MP-59\} will equal 4.
Setup State \{MP-59\}
WindCO Volts \{MP-37\}
WindCOPolarity \{CP-287\}
WindEncRPM \{MP-12\}
WindEncPty \{CP-269\}
UwndCO Volts \{MP-27\}
UwndCOPolarity \{CP-282\}
UwndEncRPM \{MP-02\}
UwndEncPty \{CP-264\}
SigPolarity \{MP-71\}

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

This test aligns the Control Output polarity and the Encoder polarity, so a positive Control Output command causes positive Encoder feedback.

If the wind and/or unwind axis is under CX-1102 control:

NOTE: This step will make use of "Direct" mode and ramps.
NOTE: The Keypad will be disabled while this test is moving the wind/unwind axis.

> WARNING
> Prepare the machine for motion.
> Alert everyone present.

The CX-1102 will flash "KeyLk" in the bottom center of the display.

Wind Polarity Test:

1) Momentarily close the KeyLk input to initiate the test.
2) The CX-1102 will test the wind axis.

For Bipolar and Unipolar Reversing Drives: The CX-1102 will ramp the Control Output command positive, and back to zero, then negative, and back to zero.

For Unipolar Drives: The CX-1102 will ramp the Control Output command positive, and back to zero. If no feedback occurs, it will negate WindCOPolarity $\{\mathbf{C P}-287\}$, then ramp the Control Output command positive, and back to zero.

Fail test:

The CX-1102 will flash "Wind Failure" then "Pg Up" in the bottom center of the display.
Check the following:
a. Control Output Unwind/Wind wiring to the drive
b. encoder input wiring
c. drive armature and power wiring
d. is the drive enabled
e. is this a Unipolar Reverse setup - check the PLC program and verify the correct connection to the drives reversing input.

Press the "Page Up" key to restart this step (Wind Polarity Test).

Pass test:

The CX-1102 will flash "Wind PASS" then "KeyLk" in the bottom center of the display. Setup State \{MP-59\} will equal 5.

The CX-1102 will change the WindEncPty \{CP-269\} to match the control output signal based on the recorded information. For unipolar drives, WindCOPolarity $\{\mathbf{C P}-287\}$ may also have been changed based on the recorded information.

If the wind axis is NOT under CX-1102 control:

1) Rotate the wind roll in the forward direction, then in the reverse direction.
2) Observe the value in WindEncRPM \{MP-12\} for a sign change. If the sign does not change then check the encoder input wiring.

Pass test:

The CX-1102 will flash "Wind PASS" then "KeyLk" in the bottom center of the display.
Setup State \{MP-59\} will equal 5.

Unwind Polarity Test:

1) Momentarily close the KeyLk input to initiate the test.
2) The CX-1102 will test the unwind axis.

For Bipolar and Unipolar Reversing Drives: The CX-1102 will ramp the Control Output command positive, and back to zero, then negative, and back to zero.

For Unipolar Drives: The CX-1102 will ramp the Control Output command positive, and back to zero. If no feedback occurs, it will negate UwndCOPolarity $\{\mathbf{C P}-\mathbf{2 8 2}\}$, then ramp the Control Output command positive, and back to zero.

Fail test:

The CX-1102 will flash "Uwnd Failure" then "Pg Up" in the bottom center of the display.

Check the following:
a. Control Output Unwind wiring to the drive
b. encoder input wiring
c. drive armature and power wiring
d. is the drive enabled
e. is this a Unipolar Reverse setup - check the PLC program and verify the correct connection to the drives reversing input.

Press the "Page Up" key to restart this step (Wind Polarity Test).

Pass test:

The CX-1102 will flash "Uwnd PASS" then "Pg Down" in the bottom center of the display.
Setup State \{MP-59\} will equal 6.

The CX-1102 will change the UwndEncPty $\{\mathbf{C P}-264\}$ to match the control output signal based on the recorded information. For unipolar drives, UwndCOPolarity $\{\mathbf{C P}-\mathbf{2 8 2}\}$ may also have been changed based on the recorded information.

If the unwind axis is NOT under CX-1102 control or is Unipolar Brake:

1) Rotate the unwind roll in the forward direction, then in the reverse direction.
2) Observe the value in UwndEncRPM \{MP-02\} for a sign change. If the sign does not change then check the encoder input wiring.

Pass test:

The CX-1102 will flash "Uwnd PASS" then "Pg Down" in the bottom center of the display. Setup State \{MP-59\} will equal 6.

Press the "Page Down" key to proceed to the next step.

Step 6 - Dancer Calibration

The CX-1102 will display automatically System Setup Dancer\Page 6. Setup State \{MP-59\} will equal 6.
Setup State \{MP-59\}
DncrFullVolts \{CP-271\}
DncrEmptyVlts \{CP-273\}
DncrCtntFull \{CP-272\}
Dancer SP \{CP-250\}
DancerCtnt \{MP-82\}
Dancer State \{MP-58\}
Dancer Volts \{MP-81\}

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

WARNING
 For safety, place the CX-1102 into F-Stop
 during the dancer calibration.

The CX-1102 will flash "Dncr to Full" then "KeyLk" in the bottom center of the display.
Move the dancer to the "FULL" position, hold it there. Momentarily close the KeyLk input, the CX-1102 will store the value from Dancer Volts \{MP-81\} into DncrFullVlts $\{\mathbf{C P}-\mathbf{2 7 1 \}}$. Setup State $\{$ MP-59\} will incre ment to 7 .

The CX-1102 will flash "Dncr toEmpty" then "KeyLk" in the bottom center of the display.
Move the dancer to the "EMPTY" position, hold it there. Momentarily close the KeyLk input, the CX-1102 will store the value from Dancer Volts \{MP-81\} into DncrEmptyVolts \{CP-273\}.

Fail test:
If the voltage-swing DOES NOT exceed the required 1 volt difference, the CX-1102 will flash
"Error <1v". The CX-1102 will NOT proceed to the next step until this has been corrected.
Press the "Page Up" key to restart this step (Dancer Calibration).

Pass test:

If the test passed, the CX-1102 will flash "Dancer PASS" then "Pg Down" in the bottom center of the display. Setup State $\{\mathbf{M P}-59\}$ will increment to 8.

NOTE: At this time thread up the machine, measure the web material that is stored in the dancer between its full and empty positions and enter it into DncrCtntFull \{CP-272\}. Also enter your Dancer $\boldsymbol{S P} \boldsymbol{\{ C P -}$ 250). The Jog inputs (jog is open loop at this time) are available to assist in threading the machine prior to running the Direction tests. Since the direction tests have not been performed yet, the Jog movment may not match the Jog input labels.

Press the "Page Down" key to proceed to the next step.

Step 7 - Wind Direction Test

The CX-1102 will display automatically System Setup Wind Direction\Page 7.
Setup State \{MP-59\} will equal 8.
Setup State \{MP-59\}
Wind State $\{$ MP-48 $\}$
WindCO Volts \{MP-37\}
WindRollRPM \{MP-13\}
DancerCtnt $\{$ MP-82 $\}$
WindCOPolarity \{CP-282\}
WindEncPlrty \{CP-264\}
Wrap Polarity \{MP-70\}
Sig Polarity $\{$ MP-71\}
Wind Dirn \{MP-61\}

NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

REMINDER: The Wind Under Wrap input MUST be shorted to common if the wind axle will have web material fed onto the roll from the bottom rather than the top of the roll. This needs to be done so the proper polarity can be determined in the following step.

If the wind axis is under CX-1102 control:

This test sets the Control Output and Encoder polarities so a positive command equals forward direction.
NOTE: The Keypad will be disabled while this test is moving the wind axis.
The CX-1102 will now display "KeyLk" (flashing) in the lower center of the display.
NOTE: The web must be threaded into the machine (and dancer), and the dancer in the (relaxed) full position with the web material tight against the dancer.

WARNING
 Prepare the machine for motion. Alert everyone present.

1) Momentarily close the KeyLk input. The CX-1102 will send a positive command to the Wind axis, for forward direction. The CX-1102 will montior the Dancer content for movement away from the Full position.

If the Dancer does not move after X number of rotations of the Wind roll, the Wind axis is stopped.
If WindCO Mode $\{\mathbf{C P}-285\}$ is set to Unipolar, this test Fails.
If WindCO Mode \{CP-285\} is set to Bipolar or Unipolar Reversing, WindCOPolarity \{CP-287\} and WindEncPlrty $\{\mathbf{C P}-\mathbf{2 6 9}\}$ are changed, and a positive command is issued to the Wind axis again for forward rotation (maximum of 2 X number of rotations). The CX-1102 will montior the Dancer content for movement away from the Full position.

If the dancer moves from Full to approximately $3 / 4$ of Full, the Wind roll is stopped, the Dancer will be held in position, and the test Passes.

Fail test:

Check the following:
a. is web threaded into machine
b. drive armature and power wiring
c. is the drive enabled
d. gear reduction is correct

Press the "Page Up" key to restart this step (Wind Direction Test).

Pass test:

The CX-1102 will flash "Wind PASS" then "Pg Down" in the bottom center of the display.
Setup State \{MP-59\} will equal 9.
Proceed to End of Wind Direction Test.

If the wind axis is NOT under CX-1102 control, if App Select \{CP-202\} is a 3 (DT Unwind only):

1) Momentarily close the KeyLk input. The CX-1102 will montior the Wind feedback and the Dancer content for movement away from the Full position to approximately $3 / 4$ of Full.
2) Rotate the Wind roll in the forward direction.
3) When the dancer moves, the CX-1102 will change the WindEncPlrty $\{\mathbf{C P}-\mathbf{2 6 9}\}$ value so WindRollRPM \{MP-13\} is a positive (no '-‘ sign) signal for forward rotation of the Wind roll, the dancer should be held in position, and the test Passes.

Fail test:

Check the following:
a. is web threaded into machine
b. drive armature and power wiring
c. is the drive enabled

Press the "Page Up" key to restart this step (Wind Direction Test).

Pass test:

The CX-1102 will flash "Wind PASS" then "Pg Down" in the bottom center of the display.
Setup State \{MP-59\} will equal 9.

End of Wind Direction Test

Press the "Page Down" key to proceed to the next step.

Step 8 - Unwind Direction Test

The CX-1102 will display automatically System Setup Unwind Direction\Page 8.
Setup State \{MP-59\} will equal 9.
Setup State \{MP-59\}
Uwnd State $\{$ MP-48 $\}$
UwndCO Volts \{MP-27\}
UwndRollRPM \{MP-03\}
DancerCtnt \{MP-82\}
UwndCOPolarity \{CP-282\}
UwndEncPlrty \{CP-264\}
Wrap Polarity \{MP-70\}
Sig Polarity $\{$ MP-71\}
Uwnd Dirn \{MP-60\}
NOTE: The Help key accesses the Help screen and gives you a brief description of the parameter or subject that is highlighted (active) on the screen. Press the Help key again to return to the previous screen.

REMINDER: The Unwind Under Wrap input MUST be shorted to common if the unwind axle will have web material fed off of the roll from the bottom rather than the top of the roll. This needs to be done so the proper polarity can be determined in the following step.

If the unwind axis is under CX-1102 control:

This test sets the Control Output and Encoder polarities so a positive command equals forward direction.
NOTE: The Keypad will be disabled while this test is moving the unwind axis.
The CX-1102 will now display "KeyLk" (flashing) in the lower center of the display.

> WARNING
> Prepare the machine for motion. Alert everyone present.

1) Momentarily close the KeyLk input.

If UwndCO Mode $\{\mathbf{C P}-\mathbf{2 8 0}\}$ is set to Unipolar Brake, the Unwind roll will be put into F-Stop with a zero volts command. The CX-1102 will wait for the Dancer content to reach the Full position while monitoring the Unwind feedback signal.

If UwndCO Mode $\{\mathbf{C P}-\mathbf{2 8 0}\}$ is set to Unipolar, Bipolar or Unipolar Reversing, the CX-1102 will send a positive command to the Unwind axis, for forward direction. The CX-1102 will montior the Dancer content for movement toward the Full position.

If the Dancer moves the wrong direction or does not move after X number of rotations of the Unwind roll, the Unwind axis is stopped.

If UwndCO Mode $\{\mathbf{C P}-280\}$ is set to Unipolar, this test Fails.
If UwndCO Mode \{CP-280\} is set to Bipolar or Unipolar Reversing, UwndCOPolarity \{CP-282\} and UwndEncPlrty $\{\mathbf{C P}-264\}$ are changed, and a positive command is issued to the Unwind axis again for forward rotation (maximum of 2X number of rotations). The CX-1102 will montior the Dancer content for movement toward the Full position.

If the Dancer moves to its Full position, both rolls are stopped, and the test Passes.

Fail test:

Check the following:
a. is web threaded into machine
b. drive armature and power wiring
c. is the drive enabled
d. gear reduction is correct

Press the "Page Up" key to restart this step (Unwind Direction Test).

Pass test:

The CX-1102 will flash "Uwnd PASS" then "Setup Done" in the bottom center of the display. Setup State \{MP-59\} will equal 10.

Proceed to End of Unwind Direction Test.

If the unwind axis is NOT under CX-1102 control, if App Select \{CP-202\} is a 4 (DT Wind only):

1) Momentarily close the KeyLk input. The CX-1102 will montior the Unwind feedback and the Dancer content for movement from approximately $3 / 4$ of Full to Full.
2) Rotate the Unwind roll in the forward direction.
3) When the dancer moves, the CX-1102 will change the UwndEncPlrty $\{\mathbf{C P}-\mathbf{2 6 4}\}$ value so UwndRollRPM \{MP-03\} is a positive (no '-' sign) signal for forward rotation of the Unwind roll and the test Passes.

Fail test:

Check the following:
a. is web threaded into machine
b. drive armature and power wiring
c. is the drive enabled

Press the "Page Up" key to restart this step (Unwind Direction Test).

Pass test:

The CX-1102 will flash "Uwnd PASS" then "Setup Done" in the bottom center of the display.
Setup State \{MP-59\} will equal 10 .

End of Unwind Direction Test

Open the "Setup" input, the CX-1102 control is in F-Stop and will automatically display the "Main Menu" screen. Remove any temporary terminal wiring.

After completing Setup proceed to the CX-1102 Technical Reference Manual: System Setup/Control Parameters, Scaling.

CREEP CALIBRATION

The Creep Calibration allows you to eliminate motion that may occur with an open loop stop (zero volt) Control Output. Make sure the unit is in F-Stop to start out.

1. Go to the Setpoints \& Ramps/Direct SP \& Ramps/P1/1 screen and select Direct Mode by entering a 0 into the App Select (CP-202) parameter. You can use the Help screen for CP202 to select Direct Mode.
2. Make sure the UwndDirect $\mathbf{S P}(\mathbf{C P}-203)=0.0$ and $\mathbf{W i n d D i r e c t} \mathbf{S P}(\mathbf{C P}-235)=0.0$ (include the decimal point).
3. Put the unit into RUN by activating the RUN input. The F-Stop, Unload, and H-Stop inputs must be closed in order to enter the RUN State. You should have the Drive Enable output connected to the drive enable input of your drive (or to a control relay that is connected to the Drive Enable input). If not, enable the drive by some external means.
4. If motion occurs, attempt to eliminate it (stop the motion) with the balance pot (also called zero-speed pot) or digital adjustment in your drive. If there is no pot (or digital adjustment) in the drive, or if the motion can not be stopped, attempt to use the UwndCO Offset (CP-283) parameter to "offset" the creep for the unwind and the WindCO Offset (CP-288) parameter to "offset" the creep for the wind. Be sure to record this parameter and/or make sure it gets into the backup parameter list at some point.

ANALOG CALIBRATION

The Analog Calibration allows you to calibrate the Dancer and Ext Line Speed Input. The board is calibrated at the factory and the accuracy should be adequate for most applications. However, you may need to recalibrate if your application demands more accuracy in a specific range. The Analog Calibration screen is accessed through Main Menu/Device Tests/Analog Input Tests/pg 2.

Before recalibrating the analog board, consult technical support first:
Contrex Technical Support (763) 424-8700 or (800) 342-4411

Dancer Input:

1. Connect the Analog voltage to the Dancer Input (JA pins 2,4). Connect a voltmeter between pins 2 and 4.
2. Set Analog Cal Sel (CP-461) to "AI1" (1) to Select AI1 for calibration.
3. Set Analog Cal Ref (CP-462) to "A" (1) to select point A.

NOTE: The old calibration data will be overwritten.
4. Set Analog Cal EN (CP-460) to "On" (1) to start calibration.
5. Adjust the analog voltage until the meter reads the voltage that you want set for point A. This is generally your smallest (or negative) voltage point.
6. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
7. Set Analog Cal Ref (CP-462) to "B" (2) to select point B.
8. Adjust the analog voltage until the meter reads the voltage that you want use for point B. This is generally your largest (or positive) voltage point.
9. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
10. Set Analog Cal EN (CP-460) to "Off" (0) to disable further calibration.

Ext Line Speed Input:

1. Connect the Analog voltage to the Ext Line Speed Input (JA pins 3,4). Connect a voltmeter between pins 3 and 4.
2. Set Analog Cal Sel (CP-461) to "AI2" (2) to Select AI2 for calibration.
3. Set Analog Cal Ref (CP-462) to "A" (1) to select point A.

NOTE: The old calibration data will be overwritten.
4. Set Analog Cal EN (CP-460) to "On" (1) to start calibration.
5. Adjust the analog voltage until the meter reads the voltage that you want set for point A. This is generally your smallest (or negative) voltage point.
6. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
7. Set Analog Cal Ref (CP-462) to "B" (2) to select point B.
8. Adjust the analog voltage until the meter reads the voltage that you want use for point B. This is generally your largest (or positive) voltage point.
9. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
12. Set Analog Cal EN (CP-460) to "Off" (0) to disable further calibration.

-NOTES-

System Setup/Control Parameters

Introduction to Control

Parameters

Setup
System Setup
Status Screen Setup
Load and Save Parms
Remote Scroll Setup
Keypad Lock Setup
Serial Comm Setup
DeviceNet Setup
Video Setup
Alm Indicator Mask

Scaling

Unwind
Wind
Dancer
Ext Line Speed
Diameters
Setpoints and Ramps
Line Speed
Run Ramps
H-Stop Ramp
Web Stretch
Jog SP and Ramps
Direct SP and Ramps
Tuning
Velocity Loop
Feedforward
Dancer
Related Items

Alarms and Limits

Alarms
Limits

Blocks

Edit Block Parms
Edit Block 0
Edit Block 1
Edit Block 2
Edit Block 3
Edit Block 4
Edit Block 5
Edit Block 6
Edit Block 7
PLC
PLC Monitor
PLC Timers
PLC Event Cntrs
PLC Postion Cntrs
PLC Data Copy
Digital I/O
PLC programming

INTRODUCTION TO CONTROL PARAMETERS

Parameters are divided into two classifications; Control Parameters (CP) and Monitor Parameters (MP). This section is about Control Parameters. Monitor Parameters are explained in System Monitoring: Monitor Parameters.

The parameters appear on the screens by a Parameter Name. The Help screens list the parameters by both their Parameter Name and by a numbered code, which is called the Parameter Code. The operational data is the Parameter Value.

	Parameter Name	Parameter Code	Parameter Value

Note: All Control Parameters are designated by a small indicator "dot" to the left of the Parameter Name, as it appears on a screen (unlike Monitor Parameters, which do not have a small indicator "dot" to the left of the Parameter Name).

The CX-1102 is pre-loaded at the factory with a complete set of default Control Parameter values. The majority of these default settings are suitable for most applications and do not require modification.

Control Parameters allow you to enter data that is unique to your system (e.g., encoder resolution, Lead to Follower ratios, maximum RPM, setpoints, acceleration/deceleration ramp rates) by accessing a parameter screen and entering a parameter value. Once the Control Parameters are entered and the setup for the CX1102 is complete, the Control Parameters can be "locked out" so that they become inaccessible from the Keypad. This feature prevents an inadvertent accidental entry. For details, refer to the Keypad Lockout screen in System Setup/Control Parameters: Setup/Keypad Lockout Setup. A synopsis of the information is also available by referencing Keypad Lockout (MP-103) in Appendices: Appendix C.

The following sections demonstrate how to use the Control Parameter screens. These sections include:

Setup	Alarms and Limits
Scaling	Blocks
Setpoints and Ramps	PLC
Tuning	

SETUP

The Setup screens allow you to perform a varitey of load, save and setup functions, The "Load" parameters allow you to load Control Parameter values and the PLC program from either the backup or from the factory default. The "Save" parameters allow you to save the Control Parameter values and the PLC program to a backup copy. You can customize the Status screen for your specific requirements. The Serial Communications Setup screen includes parameters that configure the serial communications port. When Keypad Lock Input is active, Control Parameter values can not be changed. The Keypad Lockout Setup screens allow you to specify which Control Parameters will be exempt from the lockout when the Keypad Lockout Input is active.The Video Setup screen includes the parameters that control the screen operation. Display Setup contrast and adjust the pixel intensity of the screen display. The Alarm Indicator Mask screen includes the parameters that determine which alarms and which numerical comparator outcomes will cause the 'alm' to flash in the lower-left corner of the screen. The DeviceNet setup includes Control Parameters for DeviceNet network communications.

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The Setup screens are:

- Status Screen Setup
- Load and Save Parms
- Remote Scroll Setup
- Keypad Lock Setup
- Serial Comm Setup
- DeviceNet Setup
- Video Setup
- Alm Indicator Mask

STATUS SCREEN SETUP P1/1

You can customize the six status lines, as well as the large number display and the E.U. line on the Status screen. To customize the large number display, enter this code of the parameter that you want displayed in Lg Number Parm (CP-440). Use Large Number Units (CP-449) to select and customize the E.U. line that appears immediately below the large number display. For each of the status lines (CP-441 through CP-446), enter the code of the parameter that you want to appear on the corresponding line. You can enter a " 0 " in status lines 2-6 if you want them to remain blank. You can also access and change Control Parameters 441 through 446 while you are in the Status screen by using the Code key. For details on the Code key, refer to the Status screen in Operator Interface: Screen Operation.

Lg Number Parm (CP-440)

Use Large Number Parameter (CP-440) to select the parameter that displays in the Large Number Display in the Status screen (refer to the status screen in Operator Interface: Screen Operation. You can also use the Code key to access and change CP-440 in the Status Screen.
Lg Number Units (CP-449)
Use Large Number Units (CP-449) to select the E.U. text that displays immediately below the Large Number Display in the Status screen (refer to the status screen in Operator Interface: Screen Operation). Enter the numeric code that identifies the E.U. for the Control Parameter displayed in the Large Number Parameter (CP-440). Refer to CP-449 in Appendices: Appendix C for the numeric code list. The Help screen for CP-449 also contains a partial list of numeric code options. In addition, you can also scroll through the numeric code options by accessing CP-449 with the Code key while you are in the in the Status screen.
Status Line 1 (CP-441)
Use Status Line 1 (CP-441) to select the parameter that displays on the first line, under the Large Number Display, of the Status screen (refer to the status screen in Operator Interface: Screen Operation). You can also use the Code key to access and change CP-441 in the Status screen.
Status Line 2 (CP-442)
Use Status Line 2 (CP-442) to select the parameter that displays on the second line (under the Large Number Display) of the Status screen (refer to the status screen in Operator Interface: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-442. You can also use the Code key to access and change CP-442 in the Status screen.
Status Line 3 (CP-443)
Use Status Line 3 (CP-443) to select the parameter that displays on the third line (under the Large Number Display) of the Status screen (refer to the status screen in Operator Interface: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-443. You can also use the Code key to access and change CP-443 in the Status screen.

Status Line 4 (CP-444)
Use Status Line 4 (CP-444) to select the parameter that displays on the fourth line (under the Large Number Display) of the Status screen (refer to the status screen in Operator Interface: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-444. You can also use the "Code key to access and change CP-444 in the Status screen.
Status Line 5 (CP-445)
Use Status Line 5 (CP-445) to select the parameter that displays on the fifth line (under the Large Number Display) of the Status screen (refer to the status screen in Operator Interface: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-445. You can also use the "Code key to access and change CP-445 in the Status screen.
Status Line 6 (CP-446)
Use Status Line 6 (CP-446) to select the parameter that displays sixth line (under the Large Number Display) of the Status screen (refer to the status screen in Operator Interface: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-446. You can also use the "Code key to access and change CP-446 in the Status screen.

LOAD \& SAVE PARMS P1/1

The Load and Store Parameters screen includes four parameters. The "Load" parameters allow you to load Control Parameter values and the PLC program from either the backup or from the factory default. The "Save" parameters allow you to save the Control Parameter values and the PLC program to a backup copy. The Control Parameters are located in two sections: the Main List CPs and the Block CPs. The Main List CPs are (CP-201 through CP-494). The Block CP's are (CP-500 through CP-667). You can load and save each section separately, or you can load and save both sections together .

Load Parms (CP-496)
Use Load Parameters (CP-496) to retrieve (load) parameter values from either the factory or the default backup list. You can specify which parameter values to load form the back up, per the list below. It is easier to select the Load Parameters values through the Help screen, however, you can enter the corresponding number directly into the Load Parameters (CP-496). A message will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation. The Load Parameters operation will not function while the CX-1102 is in "RUN".

```
6 = Load Dflts BlockCP
5= Load Dflts Main CP
4 = Load Dflts All Cp
3 = Load Backup BlockCP
2= Load Backup Main CP
1= Load Backup All Cps
0= No Change
```

Load Factory Defaults into CP-500 through CP-667

Load Factory Defaults into CP-500 through CP-667
Load Factory Defaults into CP-201 through CP-494
Load Factory Defaults into CP-201 through CP-667
Load Backup into CP-500 through CP-667
Load Backup into CP-201 through CP-494
Load Backup into CP-201 through CP-667

Load PLC Prgm (CP-497)
Use Load PLC Program (CP-497) to retrieve (load) either the backup for the PLC program which you have saved or the factory default PLC program. Enter " 1 " to load the backup PLC program or enter " 2 " to load the factory default PLC program. You can also select the one of the two values through the "Help" screen. The loaded program is compiled and a message will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation. The Load PLC Program operation will not function while the CX-1102 is in "RUN".

```
2 = Load Dflt PLC Prg
1 = Load Backup PLC Prg
Load Factory Default PLC program
Load Backup PLC program
0= No Change
```

Save Parms (CP-498)
Use Save Parameters (CP-498) to save the current parameter values to the backup. You can specify which parameter values to save as backup, per the list below Either enter the corresponding number directly into the Save Parameters (see list below) or select the Save Parameters values through the "Help" screen. A message (Saved2 BkUp) will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation.

```
3 = Save Block CP's Save CP-500 through CP-667 to Backup
2 = Save Main CP's Save CP-201 through CP-494 to Backup
1 = Save All CP's Save CP-201 through CP-667 to Backup
0= No Change
```

Save PLC Prgm (CP-499)
Enter a " 1 " in Save PLC Program (CP-499) to save the current PLC program to the backup. A message (Saved2 BkUp) will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation.
$1=$ Save PLC Program to Backup
$0=$ No Change

REMOTE SCROLL SETUP P1/1

Rmt Scroll (CP-400)
In Remote Scroll (CP-400), enter the number of the Control Parameter that you want the Remote Scroll Up PLC bit (168) or the Remote Scroll Dn PLC bit (169) to increment or decrement by 1 least significant digit, at the Rmt Scroll Rate (CP-401). To disable the function, set Rmt Scroll (CP-400) to "0".

Rmt Scroll Rate (CP-401)
Remote Scroll Rate (CP-401) is the number of times per second, that the Control Parameter that you entered in Rmt Scroll (CP-400) is either incremented or decremented by 1 least significant digit, when the Remote Scroll Up PLC bit (168) or the Remote Scroll Dn PLC bit (169) is active.

KEYPAD LOCKOUT SETUP P1/2

When Keypad Lock Input is active, Control Parameter values can not be changed. The Keypad Lockout Setup screens allow you to specify which Control Parameters, or blocks of Control Parameters, will be exempt from the lockout when the Keypad Lockout Input is active. Use KyPdLk Mask (CP-480) in conjunction with the Unlock Control Parameters 481-488 to specify which Control Parameters are exempt from the lockout.

KyPdLk Mask (CP-480)
When the keypad lockout input is active (low), and Key Pad Lock Mask (CP-480) is set to either " 0 "," 1 ", " 2 ", " 3 ", or " 4 ", then certain groupings (see list below) of Control Parameters can be exempted (masked out) from the lockout. In addition, the individual Control Parameters that are specified in CPs 481 through 488 are also exempt. When Key Pad Lock Mask (CP-480) is set to " 4 ", then entire blocks of Control Parameters can be exempted in Unlock Block (CP-489). If Key Pad Lock Mask (CP-480) is set to " 0 ", then all of the Control Parameters are locked out and non are exempt, including CPs 418-489.
$4=$ UnLckBlk $=$ Block Values of the Block Selected by Unlock Block (CP-489) and the Unlocked CP's.
$3=$ Blk Vals $=$ All BlockValues $(\mathrm{CP}-540-667)$ and the Unlocked CP's are allowed to change.
$2=$ Setpnts $=$ Setpoints (CP-210, 220, 230, 235, 240) and the Unlocked CP's are allowed to change.
1 = UnlckCP = CP's selected by the Unlock CP A - F are allowed to changed.
$0=$ Total Lockout (default).

Unlock CP A (CP-481)
Unlock Control Parameter A (CP-481) determines which Control Parameter can change, even when the keypadlockout is active. For the Unlock Control Parameter A (CP-481) to function, KyPdLk Mask (CP-480) must be set to a value other than " 0 " (All Lock). Enter " 0 " in Unlock Control Parameter A (CP-481) to disable it from selecting any Control Parameter.

Unlock CP B (CP-482)
Unlock CP C (CP-483)
Unlock CP D (CP-484)
Unlock CP E (CP-485)
Unlock CP F (CP-486)
Unlock CP G (CP-487)
Unlock CP H (CP-488)
Control Parameters 481-488 are identical to each other. Refer to the description for Unlock CP A (CP-481).
KeyPad Lockout (MP-103)
Keypad Lockout (MP-103) displays the Keypad Lockout status. "On" indicates that the Keypad Lockout is active. When Keypad Lockout is active, Control Parameter values can not be changed. With the exception of the Control Parameters that are exempted by CP's 480-489, the "OFF" indicates that the Keypad Lockout is not active. When the Keypad Lockout is not active, any Control Parameter can be changed.

KEYPAD LOCKOUT SETUP P2/2

KyPdLk Mask (CP-480)
When the keypad Lockout input is active (low), and Key Pad Lock Mask (CP-480) is set to either " 0 ", " 1 ", " 2 ", " 3 ", or " 4 ", then certain groupings (see list below) of Control Parameters can be exempted (masked out) from the lockout. In addition, the individual Control Parameters that are specified in CPs 481 through 488 are also exempt. When Key Pad Lock Mask (CP-480) is set to " 4 ", then entire blocks of Control Parameters can be exempted in Unlock Block (CP-489). If Key Pad Lock Mask (CP-380) is set to " 0 ", then all of the Control Parameters are locked out and non are exempt, including CPs 381-389.

4 = UnLckBlk = Block Values of the Block Selected by Unlock Block (CP-489) and the Unlocked CP's.
$3=$ Blk Vals = All BlockValues (CP-540-667) and the Unlocked CP's are allowed to change.
$2=$ Setpnts $=$ Setpoints (CP-210, 220, 230, 235, 240) and the Unlocked CP's are allowed to change.
$1=$ UnlckCP = CP's selected by the Unlock CP A - F are allowed to changed.
$0=$ Total Lockout.
UnlockBlock (CP-489)
Use Unlock Block (CP-489) to choose which block of Control Parameters are exempt from the lockout, even when Keypad-lockout is active. Unlock Block (CP-489) is used in conjunction with KyPdLk Mask (CP-480), which must be set to " 4 ". Control Parameters 481-488 are also exempt when KyPdLk Mask (CP-480) is set to " 4 ". If Key Pad Lock Mask (CP-480) is set to " 0 ", all of the Control Parameters are locked out and none are exempt, including CPs 481-489.

KeyPad Lockout (MP-103)
Keypad Lockout (MP-103) displays the Keypad Lockout status. The Keypad Lockout is active when "On" is displayed. When Keypad Lockout is active, Control Parameter values can not be changed. With the exception of the Control Parameters that are exempted by CP's 480-489. The Keypad Lockout is not active when "OFF" is displayed. When the Keypad Lockout is not active, any Control Parameter can be changed.

SERIAL COM SETUP P1/1

The Serial Communications Setup screen includes parameters that configure the serial communications port. Each CX-1102 that is connected on the same communications link, must have a unique Device Address (CP-470). The baud rate, frame format and record format must be consistent with other devices are communicating with the CX-1102.

Device Address (CP-470)

Device Address (CP-470) assigns the serial communications address for the CX-1102. This number should be different from any other units that are on the serial link.

Baud Rate (CP-471)

The Baud Rate (CP-471) determines the serial communications data transfer rate (see list below) in Bits/Sec. With a 10 bit frame length, the number of Frame/Sec would be $1 / 10$ the Baud Rate.

$$
\begin{aligned}
& 1=300 \mathrm{bps}=300 \text { Baud } \\
& 2=600 \mathrm{bps}=600 \text { Baud } \\
& 3=1200 \mathrm{bps}=1200 \text { Baud } \\
& 4=2400 \mathrm{bps}=2400 \text { Baud } \\
& 5=4800 \mathrm{bps}=4800 \text { Baud } \\
& 6=9600 \mathrm{bps}=9600 \text { Baud (default) } \\
& 7=19200 \mathrm{bps}=19.2 \mathrm{k} \text { baud }
\end{aligned}
$$

Frame Format (CP-472)

Frame Format (CP-472) determines the parity, the number of data bits and the number of stop bits for the serial communications.

$$
\begin{aligned}
& 1=\mathrm{N}, 8,1=\text { No Parity, } 8 \text { data bits, } 1 \text { stop bit (10 bit frame }- \text { ASCII or Binary }) \\
& 2=\mathrm{E}, 7,1=\text { Even Parity, } 7 \text { data bits, } 1 \text { stop bit }(10 \text { bit frame-ASCII only })
\end{aligned}
$$

Record Format (CP-469)

Record Format (CP-469) determines which type of data format (see list below) will be used for the serial communication.

$$
3=\text { ASCII } 2 \quad 2=\mathrm{ASCII} \quad 1=\text { BINARY }
$$

CRC Enable (CP-468)

If CRC Enable (CP-468) is set to "ON" (1), you must append a CRC value to all serial communications messages that are received by the CX-1102 (See Serial Communications: Using Serial Communications). The CX-1102 checks the CRC value against the the message contents (excluding the "STX"), then calculates a CRC value and appends it to all serial communications responses. If CRC Enable (CP-468) is set to "OFF" (0), the CX-1102 will ignore any CRC value that is appended to a message and will not append a CRC value to any serial communications responses.

$$
1=\text { On (Enabled }) \quad 0=\text { Off }(\text { Disabled })
$$

DEVICENET SETUP P1/2

The DeviceNet Setup screens include parameters to configure the DeviceNet option card for network communications. Page 1 of the DeviceNet Setup screens includes the Serial Number attribute of the Identity Object and the MAC ID and Baud Rate attributes from the DeviceNet Object. Page 2 is used to enter the eight Parameter Codes for the Assembly Queue. Refer to "CX-1102 DeviceNet Card Technical Manual" for more detailed information on CX-1102 DeviceNet operations.

DN MAC ID (CP-438)
DN MAC ID is the DeviceNet Media Access Control Identifier. The MAC ID is used to assign a unique identifier or address to each node on the network. Assign a different MAC ID to each CX-1102 device on the network from 0 to 63.

DN Baud Rate (CP-439)
The DN Baud Rate is the network data or transfer rate. Enter the number from the listing below that corresponds to the desired baud rate:

$$
\begin{aligned}
& 1=125 \mathrm{k} \text { bps } \\
& 2=250 \mathrm{k} \text { bps } \\
& 3=500 \mathrm{kbps}
\end{aligned}
$$

Serial Number (CP-495)
Serial Number is the serial number from the DeviceNet card in this CX-1102 controller. If the card was factory installed, the Serial Number should already be entered. If the card is being field installed, enter the Serial Number from the label on the card or recorded in the DeviceNet Card Technical Manual.

DEVICENET SETUP P2/2

The following parameters are used to identify the eight parameters for the I/O Assembly Queue.

DN Write Parm 1 (CP-430)
Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.

DN Write Parm 2 (CP-431)
Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.

DN Write Parm 3 (CP-432)
Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.

DN Write Parm 4 (CP-433)
Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.

DN Read Parm 1 (CP-434)

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.

DN Read Parm 2 (CP-435)

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.

DN Read Parm 3 (CP-436)
Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.

DN Read Parm 4 (CP-437)

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll Command in the I/O Assembly Queue.

VIDEO SETUP P1/1

The Video Setup screen includes the parameters that control the screen operation. Video Mode (CP-474) allows you to change the format. Contrast Value (CP-475) allows you to adjust the intensity of the pixels. If the screen appears too light, increase the value in Contrast Value. If the screen appears too dark, decrease the value. This may vary from screen to screen.

Video Mode (CP-474)
Video Mode (CP-474) determines how the LCD Screen Display will be displayed, per the list below:
$3=$ Standard w/Border
$2=$ Reverse Video
$1=$ Standard Video (default)

Contrast Value (CP-475)
Contrast Value (CP-475) determines the contrast for the LCD Screen Display. The higher values darken the pixels and lower values lighten the pixels.

ALARM INDICATOR MASK P1/1

The Alarm Indicator Mask screen includes the parameters that determine which alarms and which numerical comparator outcomes will cause the 'alm' to flash in the lower-left corner of the screen. The two parameters are bit mapped for each condition. Place a ' 1 ' in the bit position corresponding to the alarms or compares that you want to activate the 'alm' indicator. In this case, a ' 0 ' in the bit masks (or disables) the condition from activating the 'alm' indicator. Refer to Appendices: Appendix C for the Std Alm Msk (CP-378) and CustAlm Msk (CP-379) bit map list.

Std Alm Msk (CP-378)
The Standard Alarm Mask (CP-378) allows you to mask out specific alarms so that they will not cause the 'alm' indicator to flash (in the lower left-hand corner of the CX-1102 screen) by entering a " 0 " in the corresponding bit position (see figure below). You can also activate any of these alarm conditions by entering a " 1 " in the corresponding bit position. Refer to Appendices: Appendix C for the Alarm Mask (CP-378) bit map list.

CustAlm Msk (CP-379)

Custom Alarm Mask (CP-379) allows you to mask out the compare results so that they will not cause the 'alm' indicator to flash (in the lower left-hand corner of the CX-1102 screen) by entering a " 0 " in the corresponding bit position (see figure below). You can also activate any of these compare conditions by entering a " 1 " in the corresponding bit position. Refer to Appendices: Appendix C for the Compare Mask (CP-379) bit map list.

SCALING

This section discusses the setup procedures for scaling. The CX-1102 allows you to use Engineering Units (e.g., feet, inches, revolutions) relative to a specific time (e.g., seconds, minutes) to control and monitor your system. The scaling screens will walk you through the scaling of:

- the frequency inputs from the Unwind and Wind sensors
- the control output signal to the drive
- the Analog inputs (2) signals
- the Line Speed (MP-40); which is the default parameter that appears in the large number display on the status screen

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The CX-1102 scaling screens are:

- Unwind
- Wind
- Dancer
- Ext Line Speed

STANDARD SIGNALS

The Standard Signals screens consist of the Unwind Feedback Input screen (page 1), the Unwind Control Output screen (page 2), the Wind Feedback Input screen (page 1), and the Wind Control Output screen (page 2).

Unwind Feedback Input

The Unwind Feedback Input signal is a frequency from the quadrature sensor for the unwind motor/roll. UwndGearRdcn (CP-260) and Uwnd PPR (CP-261) scale the Unwind Feedback signal from frequency (pulses per second, Hz) to UwndRoll RPM (MP-03).

Unwind Control Output

The Control Output Signal (SigU) is the low voltage output signal that is the control (or command) signal input to your drive. SigU typically represents a speed command since the majority of drives operate in the velocity mode.

The UwndCO Offset (CP-283) is calibrated at the factory and generally will not need to be re-calibrated in most applications. The UwndCO Offset is added to the control output signal in order to zero (or balance) any offset voltage that may be present in the output circuitry. It can be used to counteract a creep problem with the drive, if a drive balance pot (or digital adjustment) is not available. When operating the SigU in bipolar, unipolar or bipolar absolute mode, the UwndCO Offset should be set to zero the SigU output voltage. Refer to Drive Setup/Calibration: Creep Calibration for more details.

Wind Feedback Input

The Wiind Feedback Input signal is a frequency from the quadrature sensor for the wind motor/roll. WindGearRdcn (CP-265) and Wind PPR (CP-266) scale the Wind Feedback signal from frequency (pulses per second, Hz) to WindRoll RPM (MP-13).

Wind Control Output

The Control Output Signal (SigW) is the low voltage output signal that is the control (or command) signal input to your drive. SigW typically represents a speed command since the majority of drives operate in the velocity mode.

The WindCO Offset (CP-288) is calibrated at the factory and generally will not need to be re-calibrated in most applications. The WindCO Offset is added to the control output signal in order to zero (or balance) any offset voltage that may be present in the output circuitry. It can be used to counteract a creep problem with the drive, if a drive balance pot (or digital adjustment) is not available. When operating the SigW in bipolar, unipolar or bipolar absolute mode, the WindCO Offset should be set to zero the SigW output voltage. Refer to Drive Setup/Calibration: Creep Calibration for more details.

UNWIND / UNWIND FEEDBACK P1/2

UwndGearRdcn (CP-260)
Unwind Gear Reduction (CP-260) is the mechanical ratio between the encoder device and the Unwind roll axle. Determine the number of encoder rotations for one axle rotation.

PPR Uwnd (CP-261)
Pulses Per Revolution Unwind (CP-261) is the number of electrical pulses in one revolution of the encoder device mounted on the Unwind axis. The value may be called Counts, Lines, or Pulses by various encoder manufacturers. Do NOT multiply by four for quadrature encoders.

UwndEncPty (CP-264)
Unwind Encoder Polarity (CP-264) is a selection that determines whether the direction indicated by the Unwind encoder can be accepted as-wired, or whether its indicated polarity must be negated (change sign). Due to encoder and installation variations, there is no way to predict whether encoder signal A will lead, or lag, signal B during forward machine motion. This controller can electronically negate the raw encoder signal if needed.

$$
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg }=\text { fwd }) \\
& 1=\operatorname{Normal}(\text { pos }=\text { fwd })(\text { default })
\end{aligned}
$$

Uwnd Hz (MP-01)
Unwind Hertz (MP-01) displays the current frequency of the Unwind Encoder Input, in Hertz.
UwndEncRPM (MP-02)
Unwind Encoder RPM (MP-02) displays the current speed of the Unwind encoder in RPM, based on PPR Uwnd (CP-261).

UwndRollRPM (MP-03)
Unwind Roll RPM (MP-03) displays the rotational speed of the Unwind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

Uwnd Rot (MP-09)
Unwind Rotations (MP-09) displays a totalized rotational count of the Unwind Roll.

UNWIND / UNWIND CONTROL OUTPUT P2/2

UwndCO Mode (CP-280)
Unwind Control Output Mode (CP-280) affects the range of Control Output (SigU) analog signal sent out to the Unwind axis. Unipolar mode issues only one polarity output, and assumes the axis drive is either not capable of reverse direction, or the user has chosen to never command it in a reverse direction. The sign (+/-) of this signal typically is " + " = fwd, and " - " = reverse, but the controller may be configured (UwndCO Plrty CP-282), or may have learned during setup, that the inverse polarity may be needed, as machines may vary in regard to which rotation direction is called forward. Bipolar mode allows both " + " and "-" signal polarities as needed for both forward and reverse operation. Bipolar allows reversal by discrete input LineSpeedReverse (LSRvs), or by accepting negative Line Speed Setpoints. Unipolar Reversible is similar to Unipolar, but will allow a reverse direction operation via the discrete input LineSpeedReverse (LSRvs), triggered by a relay that is wired to simultaneously give a reverse direction input command directly to the axis drive device itself (typically an AC Inverter). The controller will issue its normal output signal, but will expect the axis to actually rotate the other way, and will expect the quadrature encoder to confirm that reversed direction. Unipolar Brake is similar to Unipolar operation, but assumes the device physically operating the axis is a brake, rather than a motor or clutch. The command output signal is reverse sloped since brakes are assummed to apply more brake action, causing slower speed, as the signal increases in magnitude. Further a brake will apply least brake action, causing the web to be pulled off at a faster speed, when zero volts is seen. Thus brake mode is limited to the unwind axis.

$$
\begin{aligned}
& 4=\text { Unipolar Brake } \\
& 3=\text { Bipolar Absolute } \\
& 2=\text { Bipolar (default) } \\
& 1=\text { Unipolar }
\end{aligned}
$$

UwndCOMaxVolts (CP-281)

Unwind Control Output Maximum Volts (CP-281) sets the upper limit on the voltage directed out to the unwind axis drive. Bipolar operation assumes plus or minus this value. It should be set equal, or lower, than the input specifications of the unwind axis drive. This value, in conjunction with Uwnd MaxRPM (CP-329), affects the feedforward term Uwnd Kff (CP-324).

UwndCO Plrty (CP-282)
Unwind Control Output Polarity (CP-282) determines whether a positive, or negative, signal voltage will operate the Unwind Axis in the forward direction, under the most basic normal operation. Actual direction may be temporarily different due to Overwrap/Underwrap selections.

$$
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg }=\text { fwd }) \\
& 1=\operatorname{Normal}(\text { pos }=\text { fwd })(\text { default })
\end{aligned}
$$

UwndCO Offset (CP-283)

Unwind Command Out Offset (CP-283) adjusts for small variations in the specifications of certain IC devices on this particular contrControl Outputoller board. Usually a very small number, it serves to true up the 0 volts end point of the output voltage scale. It is preset at the factory, and should not need field adjustments.

UwndCO Volts (MP-27)
Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

UwndCO Bits (MP-28)
Unwind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigU) signal to the unwind drive. UwndCO Bits is the UwndCO Volts (MP-27) expressed in DAC bits.

UwndCOMaxBits (MP-29)

Unwind Control Output Maximum Bits (MP-29) reflects the maximum allowed output in units of DAC bits. The value of UwndCOMaxVolts (CP-281) determines this parameter, based on the conversion of 32767 bits = 15 VDC.

WIND / WIND FEEDBACK P1/2

WindGearRden (CP-265)

Wind Gear Reduction (CP-265) is the mechanical ratio between the encoder device and the Wind roll axle. Determine the number of encoder rotations for one axle rotation.

PPR Wind (CP-266)

Pulses Per Revolution Wind (CP-266) is the number of electrical pulses in one revolution of the encoder device mounted on the Wind axis. The value may be called Counts, Lines, or Pulses by various encoder manufacturers. Do NOT multiply by four for quadrature encoders.

WindEncPty (CP-269)

Wind Encoder Polarity (CP-269) is a selection that determines whether the direction indicated by the Wind encoder can be accepted as-wired, or whether its indicated polarity must be negated (change sign). Due to encoder and installation variations, there is no way to predict whether encoder signal A will lead, or lag, signal B during forward machine motion. This controller can electronically negate the raw encoder signal if needed.

$$
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg }=\text { fwd }) \\
& 1=\operatorname{Normal}(\text { pos }=\text { fwd })(\text { default })
\end{aligned}
$$

Wind Hz (MP-11)

Wind Hertz (MP-11) displays the current frequency of the Wind Encoder Input, in Hertz.

WindEncRPM (MP-12)
Wind Encoder RPM (MP-12) displays the current speed of the Wind encoder in RPM, based on PPR Wind (CP-266).

WindRollRPM (MP-13)

Wind Roll RPM (MP-13) displays the rotational speed of the Wind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

Wind Rot (MP-19)
Wind Rotations (MP-09) displays a totalized rotational count of the Wind Roll.

WIND / WIND CONTROL OUTPUT P2/2

WndCO Mode (CP-285)
Wind Control Output Mode (CP-285) affects the range of Control Output (SigW) analog signal sent out to the wind axis. Unipolar mode issues only one polarity output, and assumes the axis drive is either not capable of reverse direction, or the user has chosen to never command it in a reverse direction. The sign ($+/-$) of this signal typically is "+"=fwd, and "-"=reverse, but the controller may be configured (WindCO Plrty CP-287), or may have learned during setup, that the inverse polarity may be needed, as machines may vary in regard to which rotation direction is called forward. Bipolar mode allows both "+" and "-" signal polarities as needed for both forward and reverse operation. Bipolar allows reversal by discrete input LineSpeedReverse (LSRvs), or by accepting negative Line Speed Setpoints. Unipolar Reversible is similar to Unipolar, but will allow a reverse direction operation via the discrete input LineSpeedReverse (LSRvs), triggered by a relay that is wired to simultaneously give a reverse direction input command directly to the axis drive device itself (typically an AC Inverter). The controller will issue its normal output signal, but will expect the axis to actually rotate the other way, and will expect the quadrature encoder to confirm that reversed direction. Unipolar Clutch is similar to Unipolar operation, but assumes the device physically operating the axis is a torque-mode clutch, rather than a motor. Clutch mode is limited to the wind axis.

$$
\begin{aligned}
& 4=\text { Unipolar Brake } \\
& 3=\text { Bipolar Absolute } \\
& 2=\text { Bipolar (default) } \\
& 1=\text { Unipolar }
\end{aligned}
$$

WindCOMax Volts (CP-286)
Wind Control Output Maximum Volts (CP-286) sets the upper limit on the voltage directed out to the wind axis drive. Bipolar operation assumes plus or minus this value. It should be set equal, or lower, than the input specifications of the wind axis drive. This value, in conjunction with Wind MaxRPM (CP-329), affects the feedforward term Wind Kff (CP-339).

WindCO Plrty (CP-287)
Wind Control Output Polarity (CP-287) determines whether a positive, or negative, signal voltage will operate the wind axis in the forward direction, under the most basic normal operation. Actual direction may be temporarily different due to Overwrap/Underwrap selections.

$$
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg }=\text { fwd }) \\
& 1=\operatorname{Normal}(\text { pos }=\text { fwd })(\text { default })
\end{aligned}
$$

WindCO Offset (CP-288)
Wind Control Output Offset (CP-288) adjusts for small variations in the specifications of certain IC devices on this particular controller board. Usually a very small number, it serves to true up the 0 volts endpoint of the output voltage scale. It is preset at the factory, and should not need field adjustments.

WindCO Volts (MP-37)
Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

WindCO Bits (MP-38)

Wind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigW) signal to the wind drive. WindCO Bits is the WindCO Volts (MP-37) expressed in DAC bits.

WindCO MaxBits (MP-39)
Wind Control Output Maximum Bits (MP-39) reflects the maximum allowed output in units of DAC bits. The value of WindCO Max Volts (CP-286) determines this parameter, based on the conversion of 32767 bits = 15 VDC.

ANALOG SIGNALS

The Analog Signals screens consist of the Dancer Input screen (page 1) and the Ext Line Speed Input screen (page 1).

Dancer

The Dancer Input signal is used to determine Dancer Ctnt (MP-82).
Refer Drive Setup/Calibration: Calibration for additional details.

Ext Line Speed Input

The Ext Line Speed Input signal may be used to control the Line Speed only when App Select (CP-202) is set to "1" (Dancer Trimmed Unwind, both axis) or "2" (Dancer Trimmed Wind, both axis) and LineSpdSrc (CP-203) is set for External Line Speed.

Refer Drive Setup/Calibration: Calibration for additional details.

DANCER / DANCER INPUT P1/1

DncrFullVolts (CP-271)

Dancer Full Volts (CP-271) is part of the Dancer scale factor setup, with CP-272 and CP-273. The value is the actual voltage expected from the Dancer position sensor (Pot, Sonar, Optical sensor, etc.) when the Dancer arm is at the full end of its travel, with maximum web content.

DncrEmptyVlts (CP-273)

Dancer Empty Volts (CP-273) is part of the Dancer scale factor setup, with CP-271 and CP-272. The value is the actual voltage expected from the Dancer position sensor (Pot, Sonar, Optical sensor, etc.) when the Dancer arm is at the empty end of its travel, with minimum web content.

DncrCntFull (CP-272)

Dancer Content at Full Volts (CP-272) is part of the Dancer scale factor setup, with CP-271 and CP-273. The value is the Web Content, or the amount of web material (in Web EU's CP-208), stored in the dancer station when the dancer is in its full travel position.

Dancer SP (CP-250)

Dancer Setpoint (CP-250) is the desired nominal dancer operating content (position). Any deviation of actual dancer position will result in a speed adjustment at the dancer trimmed axis, in the correct direction to return the dancer toward this setpoint position. Units are Web EU. The amount of web material in the dancer station is the content. The angular dancer arm position, or the height of the dancer bar must be translated by the user into terms of web material content. One half of the value in DncrCntFull (CP-272) would be typical.

Dancer State (MP-58)

Dancer State (MP-58) displays the present condition of the Dancer LED mounted on the Analog board. The LED conditions indicate various specific Dancer arm states.

$$
\begin{array}{ll}
3=\text { Between limits }- \text { OK } & =\text { LED Green } \\
2=\text { Full limit } & =\text { LED Orange } \\
1=\text { Empty limit } & =\text { LED Red } \\
0=\text { Not calibrated } & =\text { LED Off }
\end{array}
$$

Dancer Bits (MP-80)

Dancer Bits (MP-80) displays the ADC receiving the analog Dancer signal.

Dancer Volts (MP-81)

Dancer Volts (MP-81) displays the analog Dancer signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

Dancer Ctnt (MP-82)

Dancer Content (MP-82) displays the estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

DANCER CONTENT MEASUREMENT

Dancer content is the amount of material contained in the dancer. The Dancer content should be measured as the amount of material that is dispensed out of the dancer when the dancer is moved from full to empty.

Dancer content measurement Example:

Move Dancer to the Dancer Full position.
Read value in Dancer Volts (MP-81) and enter this value into DncrFullVolts (CP-271).

Pull the material out of the dancer from the full position to the empty position.

Read value in Dancer Volts (MP-81) and enter this value into DncrEmptyVolts (CP-273).
Measure the distance from \mathbf{X} to \mathbf{Y} to determine the Dancer content.
Enter this value into DncrCtntFull (CP-272).
Units are in "Web EU"
Example: Line Speed EU's are ft/min then the Dancer EU's are feet.

Dancer Content
Dancer SP (CP-250) = --------------------- for mid-position Dancer operation 2

EXT LINE SPEED / EXT LINE SPEED INPUT P1/1

ExtLSMax Volts (CP-276)

External Line Speed Maximum Volts (CP-276) is part of the scale factor setup for an external Line Speed analog signal source. This maximum volts, together with Ext LS Max (CP-277), determines the upper point of the calibration. See also CP-278 and CP-279 which determine the lower calibration point.

Ext LS Max (CP-277)
External Line Speed at Maximum Volts (CP-277) is part of the scale factor setup for an external Line Speed analog signal source. This speed, in Web EU/Tm units selected by UnitPrs Sel (CP-208), together with ExtLSMaxVolts (CP276), determines the upper point of the calibration. See also CP-278 and CP-279 which determine the lower calibration point.

ExtLSMinVolts (CP-278)

External Line Speed Minimum Volts (CP-278) is part of the scale factor setup for an external Line Speed analog signal source. This minimum volts, together with Ext LS Min (CP-279), determines the lower point of the calibration. See also CP-276 and CP-277 which determine the upper calibration point.

Ext LS Min (CP-279)

External Line Speed at Minimum Volts (CP-279) is part of the scale factor setup for an external Line Speed analog signal source. This speed, in Web EU/Tm (CP-208), together with ExtLSMinVolts (CP-278), determines the lower point of the calibration. See also CP-276 and CP-277 which determine the upper calibration point.

Ext LS Bits (MP-86)
External Line Speed Bits (MP-86) displays the ADC receiving the analog Line Speed signal.

Ext LS Volts (MP-87)

External Line Speed Volts (MP-87) displays the analog Line Speed signal. It operates over the range of +/- 5 VDC. Reverse direction can be achieved via negative signal in some configurations, or via a positive signal plus a wire terminal reversing input switch.

Ext LineSpd (MP-88)

External Line Speed (MP-88) displays the Ext LS Volts (MP-87) signal converted into web line speed units. This display actively monitors the input signal even if the system is presently using another source for the Line Speed, or even if the value is later limited for various reasons.

DIAMETERS P1/1

UwndMinDia (CP-350)

Unwind Minimum Diameter (CP-350) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such as slack web or out-of-round rolls.

UwndMaxDia (CP-351)

Unwind Maximum Diameter (CP-351) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

WindMinDia (CP-352)

Wind Minimum Diameter (CP-352) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

WindMaxDia (CP-353)

Wind Maximum Diameter (CP-353) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

UwndEstDia (MP-07)

Unwind Estimated Diameter (MP-07) is calculated from roll rotation and dancer movement. It can also be forced to the value in UwndDiaPrst (CP-364) via PLC action. It is used to translate web speed commands into roll RPM.

WindEstDia (MP-17)

Wind Estimated Diameter (MP-17) is calculated from roll rotation and dancer movement. It can also be forced to the value in WindDiaPrst (CP-365) via PLC action. It is used to translate web speed commands into roll RPM.

SETPOINTS AND RAMPS

This section discusses the setup procedures for setpoints and ramps. The setpoint determines the speed at which you want your system to operate when the CX-1102 is in the "Run" mode. The setpoint is Line Speed in EU/Tm as determined from UnitPrs Sel CP-208) and Time Base (CP-209).

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The CX-1102 setpoint and ramps setup screens are:

- Line Speed
- Run Ramps
- H-Stop Ramp
- Web Stretch
- Jog SP \& Ramps
- Direct SP \& Ramps

RUN APPLICATIONS

There are four applications of operation; the Lead Mode, the Follower Mode and the Direct Mode. Use App Select (CP-202) to enter the application of operation that you want to use when your system is in "Run". The setpoints that correspond to these four applications of operation are; the Line Spd SP (CP-210), the Web Stretch \% (CP-220), the UwndDirect SP (CP-230), the WindDirect SP (CP-235) and the Jog SP (CP-240). Only one of these setpoints is active at any one time. The active setpoint is determined by the application of operation that you select in App Select (CP202). The active Setpoint will also appear as the Setpoint X (CP-201).

The Lead Mode is generally used to control the speed of a single drive, but it can also be used to control the Lead speed of an entire process line.

The Follower Mode is generally used to control the ratio of one drive to another.
The Unwind Direct Mode is used for direct control of the value of UwndCO Volts (MP-27) and consequently the voltage at Control Output (SigU) (J3, pin 1). The Unwind Direct Mode is generally used as a diagnostic tool. However, the Unwind Direct Mode can also be used to set the drive's operating speed directly by simulating a pot.

The result of either the Lead Mode, the Follower Mode or the Jog Setpoint Mode calculation is displayed in LineSpd SRef (MP-41). The LineSpdSRef (MP-41) is the reference speed in feedback Engineering Units per time (Fb EU/Tm). The Direct Mode caluclation is not displayed in LineSpdSRef (MP-41) because the Direct Mode forces the Control Output (SigU) to match the Direct SP (CP-130).

App Select (CP-202)

Application Select (CP-202) determines which internal control algorithm will be active. The selection is based upon which axis are controlled by a speed command output from this device. And which axis should respond to correct a displacement of the dancer arm. This selection is made during initial setup. It can not be changed during RUN.

[^0]
LINE SPEED

The Line Spd SP (CP-210) is the desired line speed (e.g., feet/minute) at which you want you system to operate.

The equation that governs this is:
LineSpdSRef (MP-41) = Line Spd SP (CP-210)

The Line Spd SP (CP-210) is only used for App Sel (CP-202) is set to "1" Dancer Trimmed Unwind, both axis or set to "2" Dancer Trimmed Wind, both axis and when the LineSpdSrc (CP-203) is set to "1" (CP-210).

LINE SPEED P1/1

Setpoint X (CP-201)
Setpoint X (CP-201) displays the active commanded Line Speed Setpoint. Setpoint X is a quick access, dynamically assigned parameter that is a mirror of the currently commanded Line Speed regardless of the source. It may display Line Spd SP (CP-210), or Pot LineSpd (MP-88) depending upon application choices. The label will change dynamically to indicate which parameter is being mirrored. If Line Spd SP (CP-210) is active, then any change to Setpoint X, (temporarily labeled LineSpeed X) will also change CP-210.

App Select (CP-202)
Application Select (CP-202) determines which internal control algorithm will be active. The selection is based upon which axis are controlled by a speed command output from this device. And which axis should respond to correct a displacement of the dancer arm. This selection is made during initial setup. It can not be changed during RUN.

$$
\begin{aligned}
& 4=\text { Dancer trims Wind. } \\
& 3=\text { Dancer trims Unwind. } \\
& 2=\text { Operate both axis. Dancer trims Wind. } \\
& 1=\text { Operate both axis. Dancer trims Unwind. } \\
& 0=\text { Direct Mode both axis. }
\end{aligned}
$$

LineSpdSrc (CP-203)

Line Speed Source (CP-203) selects the method of determining the desired line speed of the controlled axis. It can be a numerical entry via Line Speed SP (CP-210), an external Potentiometer or remote analog signal, or derived from the encoder mounted on an external lead axis which is controlled by another user-supplied system.

$$
\begin{aligned}
& 2=\text { Analog Input } \\
& 1=\text { Line Speed (CP-210) (default) }
\end{aligned}
$$

Line Spd SP (CP-210)

Line Speed Setpoint (CP-210) is the numerically entered desired Line Speed. The units were determined by CP-208 and CP-209. It can be entered from the keypad, via serial link, or optionally via DeviceNet. It is considered the ideal, or target, speed. It may be internally reduced automatically if an axis diameter becomes too small to achieve the desired speed. Such automatic reductions would be revealed in LineSpdSRef (MP-41). Note that there are other alternatives for the source of the Line Speed command. See LineSpdSrc (CP-203).

Ext LineSpd (MP-88)

External Line Speed (MP-88) displays the Ext LS Volts (MP-87) signal converted into web line speed units. This display actively monitors the input signal even if the system is presently using another source for the Line Speed, or even if the value is later limited for various reasons.

Min LineSpd (CP-212)

Minimum Line Speed (CP-212) is a lower limit to the commanded line speed. It will prevent lower entries in Line Speed (CP-203). It also limits the acceptable line speed value from the alternative external line speed potentiometer. Caution: It can not limit an external master axis that is not under its control.

Max LineSpd (CP-211)

Maximum Line Speed (CP-211) is an upper limit to the commanded line speed. It will prevent higher entries in Line Speed (CP-203). It also limits the acceptable line speed value from the alternative external line speed potentiometer. Caution: It can not limit an external master axis that is not under its control.

DANCER SETUP P1/1

Dancer SP (CP-250)

Dancer Setpoint (CP-250) is the desired nominal dancer operating content (position). Any deviation of actual dancer position will result in a speed adjustment at the dancer trimmed axis, in the correct direction to return the dancer toward this setpoint position. Units are Web EU. The amount of web material in the dancer station is the content. The angular dancer arm position, or the height of the dancer bar must be translated by the user into terms of web material content. One half of the value in DncrCntFull (CP-272) would be typical.

Dancer Auth (CP-331)

Dancer Authority (CP-331) sets a maximum, or upper limit, on the correction applied to the dancer trimmed axis by reason of displacement of the dancer from its target position. The dancer correction delta, a product of DncrCtnt Err (MP-83) and Dancer Gain (CP-332), is checked against this limit before it is used to adjust the dancer trimmed axis.

Dancer Gain (CP-332)

Dancer Gain (CP-332) adjusts the response to dancer content error. High gain can cause instability. Low gain can cause sluggish correction action.

Dancer Volts (MP-81)

Dancer Volts (MP-81) displays the analog Dancer Signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

Dancer Ctnt (MP-82)

Dancer Content (MP-82) displays the estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

DncrCtnt Err (MP-83)

Dancer Content Error (MP-83) displays the difference between requested Dancer SP (CP-250) and actual Dancer Ctnt (MP-82). This error will be used to trim the speed of the dancer trimmed axis and attempt to restore the dancer content (position) toward the Dancer SP (CP-250).

Dancer Trim (MP-84)

Dancer Trim (MP-84) displays the amount of corrective line speed adjustment applied to the "dancer trimmed" roll. Proportional to the dancer error.

Dancer State (MP-58)

Dancer State (MP-58) displays the present condition of the Dancer LED mounted on the Analog board. The LED conditions indicate various specific Dancer arm states.

$$
\begin{array}{ll}
3=\text { Between limits }- \text { OK } & =\text { LED Green } \\
2=\text { Full limit } & =\text { LED Orange } \\
1=\text { Empty limit } & =\text { LED Red } \\
0=\text { Not calibrated } & =\text { LED Off }
\end{array}
$$

RUN RAMPS

Since the ramp generator controls the rate of change of the velocity command, the velocity command is referred to as the ramped reference speed. The ramped reference speed is displayed in LineSpdRRef (MP-42). When the LineSpdSRef (MP-41) speed changes, the rate of change in the LineSpdRRef (MP-42) speed is limited by the acceleration and deceleration rates that you specify. You can specify the rates for "Run", "HStop", "Direct" and "Jog" independently.

Ramps may be used in each of the following situations:

1. The application requires slow starting and stopping to prevent product damage.
2. Minimize stress on your system during starting and stopping.
3. Minimize the overshoot of the response to step changes in the LineSpdSRef (MP-41).
4. Filter out high frequency components of the LineSpdSRef (MP-41) signal.
5. Keep the drive out of current limit (saturation) and thus maintain the linear properties of the drive. The control loop will perform better and operate more predictably.

Your drive's capacity should not be exceeded under normal operating loads. If you use acceleration rates in excess of your drive's potential, then overshoot can occur. However, if the Lead in follower applications provides adequate ramps, you can set the Acl Tm RUN (CP-301) or Dcl Tm RUN (CP-303) to "0.5"or use Ramp Thd (CP-355). The Ramp Thd (CP-355) allows the ramp for large changes in the LineSpd SRef (MP41) and bypasses the ramp for small or gradual changes. The ramp generator can be stopped in progress or bypassed through the PLC or by Cntrl Latch (CP-340).

Set the acceleration rate for the ramps by defining a reference speed for the ramps in Ref Ramps (CP-300). The acceleration rate can also be entered directly in Acl Rate RUN (CP-302), although you must also enter a valid reference speed in Ref Ramps (CP-300). This reference speed is generally the operating line speed. When you enter an acceleration time in Acl Tm RUN (CP-301), the CX-1102 automatically calculates the acceleration rate. Inversely, if you enter the acceleration rate in Acl Rt RUN (CP-302), the CX-1102 automatically calculates the acceleration time. The deceleration time and deceleration rate operate in the same way. When you enter a new reference speed, the CX-1102 automatically calculates the acceleration and deceleration times and preserves the given rates. The acceleration rate is defined by:

$$
\text { acceleration rate }=\frac{\text { reference speed }(\mathrm{EU} / \mathrm{Tm})}{\text { acceleration time }(\text { Seconds })}
$$

Likewise, the deceleration rate is defined by:

$$
\text { deceleration rate }=\frac{\text { reference speed }(\mathrm{EU} / \mathrm{Tm})}{\text { deceleration time }(\text { Seconds })}
$$

RUN RAMPS P 1/1

The Run Ramps parameters determine the acceleration and deceleration rates that are used during RUN. The Ref Ramps (CP-300) is the reference speed in EU/Tm used to define the RUN ramps. Acl Tm RUN (CP301) is the time it would take to accelerate from " 0 " to the Ref Ramps (CP-300) speed. The Acl Rt RUN (CP-302) is the acceleration rate in $\mathrm{EU} / \mathrm{Tm} / \mathrm{Sec}$. Dcl Tm RUN (CP-303) is the time it would take to decelerate from the reference speed to " 0 " speed. The Dcl Rt RUN (CP-304) is the deceleration rate in EU/ $\mathrm{Tm} / \mathrm{Sec}$. Note that there are separate parameters that define the deceleration rates that are used for "H-Stop".

Ref Ramps (CP-300)

The acceleration rate for the Lead Mode and the Follower Mode are determined by the Acl Tm RUN (CP-301) and the Referance Ramps (CP-300) The deceleration rate (from a faster speed to a slower speed) for the Lead Mode and the Follower Mode, are determined by the Dcl Tm RUN (CP-303) and the Ref Ramps (CP-300).

Acl Tm RUN (CP-301)

Acceleration Time RUN (CP-301) is the time, in seconds, that it takes to accelerate from 0 to the Ref Ramps (CP300), while operating in the Lead or Follower Setpoint modes.

Acl Rt RUN (CP-302)

Acceleration Rate RUN (CP-302) is the acceleration rate that is used (while in Run) for the Lead and Follower Setpoints when the magnitude of the Scaled Reference increases.

Dcl Tm RUN (CP-303)

Deceleration Time RUN (CP-303) is the time in seconds, that it takes to decelerate from Ref Ramps (CP-300) speed to 0 , while operating in the Lead or Follower Setpoint modes.

Dcl Rt RUN (CP-304)

Deceleration Rate RUN (CP-304) is the deceleration rate that is used (while in Run) for the Lead and Follower Setpoints when the magnitude of the Scaled Reference decreases.

Ramp Thd (CP-355)
When the diference between the LineSpdSRef (MP-41) and the LineSpdRRef (MP-42) is greater than Ramp Thd (CP-355), the ramp will work normally. When the difference between the LineSpdSRef (MP-41) and the LineSpdRRef (MP-42) is less than or equal to Ramp Thd (CP-355), the ramp will be bypassed. This avoids ramp delays for small lead changes but still allows a ramp for large lead or for large Lead Setpoint changes.

H-STOP RAMP P1/1

There are separate parameters that define the deceleration rate that is used for "H-Stop". However, Ref Ramps (CP-300) functions as the reference speed. Dcl Tm HStp (CP-307) is the time it would take to decelerate from the Reference Ramps speed to 0 for an "H-Stop". Dcl Rt HStp (CP-308) is the deceleration rate for "H-Stop".

Ref Ramps (CP-300)
The acceleration rate for the Lead Mode and the Follower Mode are determined by the Acl Tm RUN (CP-301) and the Ref Ramps (CP-300). The deceleration rate (from a faster speed to a slower speed) for the Lead Mode and the Follower Mode, are determined by the Dcl Tm RUN (CP-303) and the Ref Ramps (CP-300).

Dcl Tm HStp (CP-307)
Deceleration Time H-Stop (CP-307) is the time, in seconds, that it takes to decelerate from the Ref Ramps (CP-300) speed to 0 , during H-Stop, while operating in Jog, or the Lead Mode or the Follower Mode.

Dcl Rt HStp (CP-308)
Deceleration Rate H-Stop (CP-308) is the deceleration rate that is used for H-Stop, while operating in Jog, or the Lead Mode or the Follower Mode.

STRETCH P1/1

App Select (CP-202)
Application Select (CP-202) determines which internal control algorithm will be active. The selection is based upon which axis are controlled by a speed command output from this device. And which axis should respond to correct a displacement of the dancer arm. This selection is made during initial setup. It can not be changed during RUN.
$4=$ Dancer trims Wind.
$3=$ Dancer trims Unwind.
$2=$ Operate both axis. Dancer trims Wind.
$1=$ Operate both axis. Dancer trims Unwind.
$0=$ Direct Mode both axis.

Stretch \% (CP-220)
Stretch \% (CP-220) determines the ratio of dancer trimmed axis line speed to non-dancer trimmed axis line speed. A value of 0.0% means equal line speeds, and would be appropriate for a non-extensible (no stretch) web material. If a material is expected to stretch, use a positive $\%$, and if expected to shrink, use a negative $\%$. The dancer control action will attempt to automatically compensate for an incorrect stretch $\%$. However, the dancer will remain closer to the desired position, and dynamic response will be enhanced if this Stretch \% properly reflects the expected stretch/ shrink \%.

Min Stretch \% (CP-222)
Min Stretch \% (CP-222) is a lower limit to the Stretch \% (CP-220). It will prevent lower entries in Stretch \% (CP220).

Max Stretch \% (CP-221)
Max Stretch \% (CP-221) is an upper limit to the Stretch \% (CP-220). It will prevent higher entries in Stretch \% (CP-220).
-NOTES-

JOG SP \& RAMPS P1/1

The Jog screen includes the parameters that are related to "Jog" operation. The Jog Setpoint as well as the accel and decel rates can be set in this screen. The loop type selection for the "Jog" mode of operation is also available on this screen. You can "Jog" in open loop mode, which uses Kff to generate the Control Output (SigU/SigW) based on the desired Jog Setpoint. You can also "Jog" in closed velocity loop which uses Kff and the PID loop to generate the Control Output (SigU/SigW) based on the desired Jog Setpoint. The closed loop operation requires Feedback, but should result in more accurate operating speed and better speed regulation.

There are also parameters to define the ramps used for "Jog". The Jog SP (CP-240) in RPM functions as the reference speed. The Acl Tm Jog (CP-241) is the that time it will take to accelerate from " 0 " speed to the Jog SP. The Acl Rt Jog (CP-242) is the acceleration rate for "Jog". Dcl Tm Jog (CP-243) is the time it should take to decelerate from the Jog SP to " 0 " speed. The Dcl Rt Jog (CP-244) is the deceleration rate used when the Jog SP is changed to a lower value as well as when both the Jog Forward and the Jog Reverse Inputs are deactivated and the axis is in Jog-Stop State until it reaches "0" speed.

Jog SP (CP-240)

The Jog Setpoint (CP-240) is the speed, in RPM, at which Jog ramps when it is activated. The Jog ramp rates are referenced to this speed.

Acl Tm Jog (CP-241)

Acceleration Time Jog (CP-241) is the time, in seconds, that it takes to accelerate from " 0 " to the Jog SP (CP-240).

Acl Rt Jog (CP-242)

Acceleration Rate Jog (CP-242) is the rate, in RPM per second, that it takes to accelerate when Jog is activated.

Dcl Tm Jog (CP-243)

Deceleration Time Jog (CP-243) is the time, in seconds, that it takes to decelerate from Jog SP (CP-240) to " 0 ", when the Jog Input is deactivated or when switching between "Jog Fwd" and "Jog Rvs".

Dcl Rt Jog (CP-244)

Deceleration Rate Jog (CP-244) is the rate, in RPM per second, that is used when the Jog Input is deactivated or when switching between "Jog Fwd" and "Jog Rvs".

Jog Loop Mode (CP-321)
Jog Loop Mode (CP-321) identifies the type of control loop (see list below) that is used during Jog.

```
1 = Velocity Loop (default)
0= Open Loop
```


DIRECT SP \& RAMPS

Direct Setpoint Mode puts a voltage on the Control Output (SigU/SigW). The UwndDirect SP (CP-230)/ WindDirect SP (CP-235) sets this voltage directly. The CX-1102 must be in "Run".

Restrictions to the polarity of the output signal can be done with the UwndCO Mode (CP-280)/WindCO Mode (CP-285) on page 2 of the Scaling / Unwind / Unwind Control Out and/or page 2 of the Scaling / Wind / Wind Control Out screen.

Direct Setpoint Mode is used to directly control the voltage on the Control Output (SigU/SigW), which connects to the drive. It is typically used as a diagnostic tool, but could be as a pot replacement for indirectly setting the operating speed of the drive. When using Direct Setpoint Mode, the Control Output (SigU/SigW) voltage will be fixed at the value you enter into the UwndDirect SP (CP-230)/WindDirect SP (CP-235). It is an open loop operation and there is no attempt at controlling the Feedback speed. There is only one format available to Direct mode operation. There are separate ramp parameters associated with Direct Mode.

The defining equation for Direct Setpoint Mode:
UwndCO Volts (MP-27) volts = UwndDirect SP (CP-230) volts or WindCO Volts (MP-37) volts = WindDirect SP (CP-235) volts

Since the Direct Setpoint Mode is used to directly output a given voltage rather than command a speed, it must have separate parameters to define the 'voltage' ramp. The UwndCOMaxVolts (CP-281) and WindCOMaxVolts (CP-286) are the reference voltages used to define the Direct ramps. The Acl Tm Drct (CP-311) is the time it would take to increase the Control Output (SigU/SigW) voltage from "0" volts to the reference voltage. The Dcl Tm Drct (CP-312) is the time it would take to decrease the Control Output (SigU/ SigW) Volts from reference voltage to " 0 " volts.

The following pages display a synopsis of the Direct mode parameters.

DIRECT SP \& RAMPS P1/1

App Select (CP-202)

Application Select (CP-202) determines which internal control algorithm will be active. The selection is based upon which axis are controlled by a speed command output from this device. And which axis should respond to correct a displacement of the dancer arm. This selection is made during initial setup. It can not be changed during RUN.
$4=$ Dancer trims Wind.
$3=$ Dancer trims Unwind.
$2=$ Operate both axis. Dancer trims Wind.
$1=$ Operate both axis. Dancer trims Unwind.
$0=$ Direct Mode both axis.

Uwnd Direct SP (CP-230)

Unwind Direct Setpoint (CP-203) is active only in Direct Mode (CP202=0). It sends a voltage value directly to the Control Output (SigU) terminal. Run/Stop commands are recognized, but no other control function is active. All encoder and dancer signals are ignored.

Wind Direct SP (CP-235)

Wind Direct Setpoint (CP-235) is active only in Direct Mode (CP202=0). It sends a voltage value directly to the Control Output (SigW) terminal. Run/Stop commands are recognized, but no other control function is active. All encoder and dancer signals are ignored.

Acl Tm Drct (CP-311)
Acceleration Time Direct (CP-311) is the time, in seconds, that it takes to accelerate from 0 to the UwndCOMaxVolts (CP-281) and/or WindCOMaxVolts (CP-286) voltage, while operating in the Direct Mode.

Dcl Tm Drct (CP-312)
Deceleration Time Direct (CP-312) is the time, in seconds, that it takes to decelerate from the UwndCOMaxVolts (CP-281) and/or WindCOMaxVolts (CP-286) voltage to 0 volts, while operating in the Direct Mode.

UwndCO Volts (MP-27)
Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

WindCO Volts (MP-37)
Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

UwndRollRPM (MP-03)

Unwind Roll RPM (MP-03) displays the rotational speed of the Unwind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

WindRollRPM (MP-13)

Wind Roll RPM (MP-13) displays the rotational speed of the wind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

TUNING

Tuning includes setting the PID and Feedforward tuning parameters.

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The CX-1102 Tuning parameters are found in the following screens:

- Velocity Loop
- Feedforward
- Dancer
- Related Items

Tuning

Tuning should only be performed after successful completion of "Setup"

Tuning without Web

Tuning the system without web allows you to isolate each axis from system interaction, doesn't waste material, and there is no threat of web breakage. This method does require the dancer to be in its "loaded" position with Dancer Content Error (MP-83) negative to enable the system to be put into "RUN" while tuning without web. Also since system dynamics may change after web is threaded into the machinery, some fine tuning may be required.

Initialization

1. Enter "Both" (4) in FixedDiaSel (CP-207).
2. If possible, set UwndDiaPrst (CP-364) and WindDiaPrst (CP-365) so Line Speed = RPM.

Example: \quad CP-208 UnitPrs Sel $=\mathrm{ft} / \mathrm{in}$ and CP -209 Time Base $=$ minute CP-364 \& CP-365 $=3.82$ inches (approx. 1 ft circumference) $1 \mathrm{ft} / \mathrm{min}=1 \mathrm{RPM}$
3. Enter "0" into Dancer Gain (CP-332). Screen - Setpoints \& Ramps/Dancer
4. Enter into Ref Ramps the expected running line speed (units equivalent to CP-208 \& CP-209). Screen - Setpoints \& Ramps/Run Ramps
5. Enter into RUN Ramp times the minimum $1 / 2$ second. Screen - Setpoints \& Ramps/Run Ramps
6. Enter into H-Stop Decel Ramp time the minimum $1 / 2$ second.

Screen - Setpoints \& Ramps/H-Stop Ramp
7. Enter into LineSpd SP (CP-201 or CP-210) a slow speed (approximately $1 / 5$ normal running speed). Screen - Setpoints \& Ramps/Line Speed

NOTE: When tuning you will be testing the response of each axis while changing setpoints.

Feedforward

1. Enter KffAdjUpdt (CP-342) for $1 \operatorname{Sec}$ (3). Screen - Tuning/Feedforward pages 1 and 2
2. Enter KffAutoSel (CP-343) for "Both" (if controlling both axis or set to the axis under control if only controlling one axis).
3. Enter "ON" (1) into Kff Auto En (CP-344).
4. "Run" the system for a few seconds and let the CX-1102 set the values for Uwnd MaxRPM (CP-329) and/or Wind MaxRPM (CP-339).
5. Enter "OFF" (0) into Kff Auto En (CP-344).

Tuning

Tune each axis with empty rolls if possible.

DANGER

When you send the drive into oscillations, the system may react with abrupt or violent operation.

1. Enter "0" into all PID " K " values. Screen - Tuning/Feedforward pages $\mathbf{1}$ and 2
2. Put the system into RUN state. This may require supporting the dancer in the "Loaded" position so the CX-1102 goes into H-Stop state when the Load terminals are closed.

NOTE: While adjusting the Kp, Ki, and Kd values, periodically change the LineSpd SP (CP-201) from a low line speed (RPM) to a higher line speed (RPM).

NOTE: Tune one axis then the other using the same procedure.
3. Increase the "Kp" value by 100 until the motor becomes unstable (you observe slight vibration), then decrease the "Kр" value by 100 until the vibrations disappear.
4. Increase the "Ki" value by 10 until you see overshoot or the motor becomes unstable when changing Line Speed (sustained oscillations), then decrease the "Ki" value by 10 until the motor becomes stable again and there is acceptable overshoot when changing speeds.
5. Enter "1" (RPM) into UwndDerivThd (CP-328) and WindDerivThd (CP-338).
6. Increase the "Kd" value by 100 's while running steady at a low line speed until the motor/feedback begins to jitter, then decrease the value for "Kd" by 100 and increase the value for UwndDerivThd (CP-328) or WindDerivThd (CP-338) of the axis you are tuning by 1's until the jittering (at low line speed) ceases. If the jittering does not quit, try decreasing the value of "Kd" also. After achieving smooth steady state running line speed operation, try changing between low and higher line speeds.

Observe the response of the axis.
Too much overshoot: Decrease "Ki" and/or increase "Kd". Jerky transitions between speeds: Decrease "Kp" and/or "Kd". Jittery at steady line speeds: Decrease "Kd" and/or increase Derivative Threshold.

Repeat the above steps (3 thru 6) for the other axis.
After successfully achieving smooth operation, H-Stop the CX-1102/System, and put the CX-1102 into F-Stop state.

Re-configure the CX-1102 back to normal setup values

1. Enter into the Set FixedDiaSel (CP-207) to correctly represent your system. If necessary change either UnitPrs Sel (CP-208) and/or Time Base (CP-209) to correctly define the units for your system.
2. Enter into the RUN Ramp acceleration and deceleration times/rates and the H-Stop deceleration time/ rate to your desired times/rates.
3. Enter into LineSpd SP (CP-201) the value for normal running line speed.

Dancer Tuning

After successfully achieving smooth/acceptable operation for each axis under control it is now time to thread the machine and tune the Dancer operation.

1. Enter the value for Dancer Auth (CP-331) to be the same as the normal running line speed value in LineSpd SP (CP-201). Screen - Tuning/Dancer
2. Enter " 10 " into Dancer Gain (CP-332).
3. Enter into the LineSpd SP (CP-201) a value to run at a low line speed.
4. Momentarily close the "Load" input to load the dancer.

NOTE: The dancer may travel past its setpoint position and converge back to the setpoint position very slowly. This response will get better after you have finished this procedure.
5. Put the system into "RUN" and observe the Dancer.
6. While running, increase the Dancer Gain (CP-332) by 10's until you observe the dancer oscillating around its setpoint position, then reduce the Dancer Gain until it stabilizes.
7. Try several sequences of H-Stop, Unload, Load, and Run while observing the Dancer.

NOTE: Too much Dancer Gain will cause the dancer to oscillate or become unstable, too little Dancer Gain will make the dancer "sluggish" and unresponsive. Adjust the Dancer Gain value to obtain acceptable smooth responsive operation (very little dancer movement).
8. If the Dancer appears to be "jerky" while running at steady line speeds try increasing the value(s) for UwndMinDelta (CP-346) and/or WindMinDelta (CP-347). If your system has one fixed diameter, try also adjusting the value for DncrMinDelta (CP-345). These are thresholds that are used to trigger new diameter calculations.
9. If the dancer exhibits occasional oscillations or appears to be too responsive after a "Load" operation, decrease the value for Dancer Auth (CP-331). This limits the amount of Dancer Trim (MP-84) applied to the "dancer-trimmed" axis. Too little Dancer Auth will cause the dancer to be "sluggish" in converging to its setpoint position or appear non-responsive. However limiting the Dancer Trim by lowering the Dancer Auth value may "dampen" any occasional oscillations observed while running at normal line speeds. After decreasing the Dancer Auth, if the dancer does not recover back to its setpoint position after a disturbance, increase the Dancer Auth value so the dancer converges back to its setpoint.

NOTE: Since coarse adjustments were made (by 10 's and 100 's) during this tuning process, fine tuning may now be done in smaller increments if necessary.

Tuning with Web

Tuning with web allows you to accurately and completely tune the system as a whole. However, tuning with web threaded into the system may make it slightly more difficult to achieve optimum performance due to system interaction.

NOTE: Feedforward should be set prior to performing this tuning procedure. When using the "Automatic Feedforward Adjust" feature of the CX-1102, it is best to do so before the machine is threaded with web, unless the system will only be operated in one direction or you intend to leave the "Automatic Feedforward Adjust" feature enabled continuously. However, it is recommended that the "Automatic Feedforward Adjust" (CP-344) be set to "OFF" while tuning the system.

Initialization

1. Enter into the LineSpd SP (CP-201) approximately 1/10th the normal operating line speed for the system. Screen - Setpoints \& Ramps/Line Speed
2. Enter into the Ref Ramps (CP-300) a value for normal operating line speed.

Screen - Setpoints \& Ramps/Run Ramps

3. Enter into the RUN Ramp acceleration time/rate and deceleration time/rate, and also the H-Stop deceleration time/rate to desired values. Screen - Setpoints \& Ramps/Run Ramps
4. Enter into the Dancer Auth (CP-331) a value for normal operating line speed.

Screen - Tuning/Dancer

5. Enter " 10 " into Dancer Gain (CP-332). Screen - Tuning/Dancer
6. Enter " 100 " into Uwnd Kp (CP-325) and Wind Kp (CP-335). Screen - Tuning/Velocity Loop
7. Enter "20" into Uwnd Ki (CP-326) and Wind Ki (CP-336). Screen - Tuning/Velocity Loop
8. Enter "0" into Uwnd Kd (CP-327) and Wind Kd (CP-337). Screen - Tuning/Velocity Loop

Tuning

DANGER
 When you send the drive into oscillations, the system may react with abrupt or violent operation.

1. Momentarily close the "Load" input to load the dancer. Observe operation of the axis while it loads the dancer. Operation should be smooth. If not, reduce "Kp" and/or "Ki" values for the Loading axis until it loads the dancer smoothly. Screen - Tuning/Feedforward pages 1 and 2

NOTE: If the axis does not successfully load the dancer, check Jog Loop Mode (CP-321), make sure it is set to "Vel" (1) closed loop, if it is you may have to increase the values for "Kp" and "Ki" to allow the dancer to be loaded, or you may have to increase the Jog SP (CP-240), or decrease the "Jog" ramp times.

NOTE: While tuning you will be observing the system stability while running at a steady line speed and while changing between a low and a higher line speed.
2. After successfully loading the dancer, momentarily close the "RUN" input to put the system into "RUN" state at a low line speed.
3. Observe the response of the non-dancer trimmed axis.
4. Increase the value of "Kp" for the non-dancer trimmed axis by 100 until you observe instability or vibration of the motor, roll, or dancer, then reduce the "Kp" value until the vibration disappears and the system runs smoothly.
5. Try changing from the $1 / 10$ th line speed setpoint to a line speed of approximately $1 / 4$ th of normal operating speed and back. Observe the system stability. Adjust "Kp" accordingly as discussed above.
6. Next increase the value of "Ki" for the non-dancer trimmed axis by 10 until you observe unacceptable overshoot or oscillatory instability during line speed setpoint changes, then reduce the value for "Ki" of the non-dancer trimmed axis until the axis operates smoothly while changing the line speed setpoint between the $1 / 10$ th and $1 / 4$ th of normal operating line speed setpoint values. Set for smooth stable operation with acceptable overshoot. Monitor the Line Speed (MP-40) for overshoot while changing line speeds.
7. Enter "1" (RPM) into UwndDerivThd (CP-328) and/or WindDerivThd (CP-338).

NOTE: The effect of the derivative term set by "Kd" is to decrease overshoot and damp out load disturbances while the system is running. The derivative term can help stabilize control if the system has rolls with large diameters and large inertias.
8. Enter a value of " Kd " for the non-dancer trimmed axis to approximately $1 / 2$ the value set for " Kp " of the same axis. Observe the system operation at steady line speed. If it runs smoothly, try increasing the value of "Kd" by 100 until the system exhibits jitter, then reduce "Kd" until the jitter disappears.

NOTE: If the axis continually causes jitter, increase the value for its Derivative Threshold by 1's until the jitter disappears. If this does not successfully remove the $j i t t e r$, reduce the value for "Kd" until the axis and the system runs stable, then reduce the Derivative Threshold by 1's until the jitter occurs, then increase it by 1's until it disappears again.
9. Try changing the Line Speed Setpoint (CP-201) values again between the low setting and the higher setting. Observe the axis stability. If it is "jerky" while changing speeds, reduce the value for "Kd" by 100 until smooth transitions are observed during line speed changes.
10. Repeat Steps 4 thru 9 for the dancer trimmed axis.
11. Increase the value of "Kp-p" (CP-323 for Unwind or CP-333 for the Wind) for the non-dancer trimmed axis to achieve acceptable position hold during "Load", "H-Stop", and "Unload" states. Too much "Kp-p" may cause the motor and roll to oscillate when transitioning to H-Stop or Unload states from RUN or Jog, especially if the deceleration rates are fast. Increase this value enough to provide a steady roll during "Load", "H-Stop", and "Unload" states.

NOTE: Depending on system configuration and operation during "Load" and "Unload" states the value of "Кр-р" for the dancer trimmed axis may also have to be set per instructions in Step 11 above.

Dancer Tuning

After successfully achieving smooth/acceptable operation for each axis under control it is now time to tune the Dancer operation.

1. Enter into a value for Dancer Auth (CP-331) to be the same as the normal running line speed value in LineSpd SP (CP-201). Screen - Tuning/Dancer
2. Enter " 10 " into Dancer Gain (CP-332).
3. Enter into LineSpd SP (CP-201) a value to run at a low line speed.
4. Momentarily close the "Load" input to load the dancer.

NOTE: The dancer may travel past its setpoint position and converge back to the setpoint position very slowly. This response will get better after you are finished with this procedure.
5. Put the system into "RUN" and observe the Dancer.
6. While running, increase the Dancer Gain (CP-332) by 10's until you observe the dancer oscillating around its setpoint position, then reduce the Dancer Gain until it stabilizes.
7). Try several sequences of H-Stop, Unload, Load, and Run while observing the Dancer.

NOTE: Too much Dancer Gain will cause the dancer to oscillate or become unstable, too little Dancer Gain will make the dancer "sluggish" and unresponsive. Adjust the Dancer Gain value to obtain acceptable smooth responsive operation.
8. If the Dancer appears to be "jerky" while running at steady line speeds try increasing the value(s) for UwndMinDelta (CP-346) and/or WindMinDelta (CP-347). If your system has one fixed diameter, try also adjusting the value for DncrMinDelta (CP-345). These are thresholds that are used to trigger new diameter calculations.
9. If the dancer exhibits occasional oscillations or appears to be too responsive after a "Load" operation, decrease the value for Dancer Auth (CP-331). This limits the amount of Dancer Trim (MP-84) applied to the "dancer-trimmed" axis. Too little Dancer Auth will cause the dancer to be "sluggish" in converging to its setpoint position or appear non-responsive. However limiting the Dancer Trim by lowering the Dancer Auth value may "dampen" any occasional oscillations observed while running at normal line speeds. After decreasing the Dancer Auth, if the dancer does not recover back to its setpoint position after a disturbance, increase the Dancer Auth value so the dancer converges back to its setpoint.

NOTE: Since coarse adjustments were made (by 10 's and 100 's) during this tuning process, fine tuning may now be done in smaller increments if necessary.

VELOCITY LOOP UNWIND P1/3

The Velocity Loop screen includes parameters for the loop-type selection, the PID parameters for the Velocity Loop (Kp, Ki, Kd), and four tuning monitor parameters

UwndCntrlLp (MP-72)

Unwind Control Loop (MP-72) displays the present operating mode of the unwind axis. These modes are automatically selected depending on the present system State (MP-50).

$$
\begin{aligned}
& 2=\text { PsnHld (Position Hold) } \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
$$

Uwnd Kp (CP-325)

Unwind Kp (CP-325) is the proportional gain constant for the PID loop. An increase in Unwind Kp (CP-325) creates a quicker response and a smaller error. However, a value that is too large will cause instability. If the integral term is used, (i.e., Unwind Ki not equal to zero) then a nonzero Unwind Kp can actually improve the loop response and decrease the overshoot to some extent.

Uwnd Ki (CP-326)

Unwind Ki (CP-326) is the integral constant for the PID loop. Integral action provides for zero steady state error. Increase Unwind Ki (CP-326) for a faster convergence to zero error. However, a value that is too large will cause instability.

Uwnd Kd (CP-327)

Unwind Kd (CP-327) is the derivative constant for the PID loop. Derivative action attempts to damp out overshoot. Its effect is highly dependent on Unwind Kp and Unwind Ki, but, generally, too large a value causes instability.

Uwnd Kp-p (CP-323)

Unwind Kp-p (CP-323) is the proportional gain constant applied to the position error when the unwind axle is in position hold. The position hold gain may need to be different than the Uwnd Kp ($\mathrm{CP}-325$) under run conditions.

Uwnd Intgrl (MP-25)
Unwind Integral (MP-25) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Uwnd Intgrl is displayed in Volts. Uwnd Intgrl (MP-25) is a conditioned error signal that serves to adjust the UwndCO Volts (MP-27) to help achieve the desired speed. It is part of the PID error correction algorithm.

Uwnd Trim (MP-26)

Unwind Trim (MP-26) displays the value of the output of the PID compensator. Uwnd Trim is displayed in Volts. Uwnd Trim is the combined conditioned error signals that, combined with the Uwnd FFwd (MP-24), will become the UwndCO Volts (MP-27). It is the combination of all three parts of the PID error correction algorithm.

UwndCO Volts (MP-27)
Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

UwndRR Err (MP-22)

Unwind Ramped Reference Error (MP-22) displays the instantaneous difference between the commanded UwndRRef (MP-21) and the actual UwndRollRPM (MP-03).

VELOCITY LOOP WIND P2/3

The Velocity Loop screen includes parameters for the loop-type selection, the PID parameters for the Velocity Loop ($\mathrm{Kp}, \mathrm{Ki}, \mathrm{Kd}$), and four tuning monitor parameters

WindCntrlLp (MP-73)

Wind Control Loop (MP-73) displays the present operating mode of the wind axis. These modes are automatically selected depending on the present system State (MP-50).

$$
\begin{aligned}
& 2=\text { PsnHld (Position Hold) } \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
$$

Wind Kp (CP-335)
Wind $\mathrm{Kp}(\mathrm{CP}-335)$ is the proportional gain constant for the PID loop. An increase in Wind Kp (CP-335) creates a quicker response and a smaller error. However, a value that is too large will cause instability. If the integral term is used, (i.e., Wind Ki (CP-336) not equal to zero) then a nonzero Wind Kp (CP-335) can actually improve the loop response and decrease the overshoot to some extent.

Wind Ki (CP-336)
Wind Ki (CP-336) is the Integral constant for the PID loop. Integral action provides for zero steady state error. Increase Wind Ki (CP-336) for a faster convergence to zero error. However, a value that is too large will cause instability.

Wind Kd (CP-337)
Wind Kd (CP-337) is the derivative constant for the PID loop. Derivative action attempts to damp out overshoot. Its effect is highly dependent on Wind Kp and Wind Ki, but, generally, too large a value causes instability.

Wind Kp-p (CP-333)
Wind Kp-p (CP-333) is the proportional gain constant applied to the position error when the wind axle is in position hold. The position hold gain may need to be different than the Wind Kp (CP-335) under run conditions.

Wind Intgrl (MP-35)

Wind Integral (MP-35) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Integral is displayed in Volts. Wind Intgrl (MP-35) is a conditioned error signal that serves to adjust the WindCO Volts (MP-37) to help achieve the desired speed. It is part of the PID error correction algorithm.

Wind Trim (MP-36)
Wind Trim (MP-36) displays the value of the output of the PID compensator. Wind Trim is displayed in Volts. Wind Trim is the combined conditioned error signals that, combined with the WindFFwd (MP-34), will become the WindCO Volts (MP-37). It is the combination of all three parts of the PID error correction algorithm.

WindCO Volts (MP-37)

Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

WindRR Err (MP-32)
Wind Ramped Reference Error (MP-32) displays the instantaneous difference between the commanded WindRRef (MP-31) and the actual WindRollRPM (MP-13).

VELOCITY LOOP P3/3

UwndTrim Auth (CP-356)
The trim contribution to the DAC output is limited to positive and negative Unwind Trim Authority (CP-356).

WindTrim Auth (CP-358)
The trim contribution to the DAC output is limited to positive and negative Wind Trim Authority (CP-358).

UwndIntgrl Lmt (CP-357)
The integral contribution to the trim term is limited to the positive and negative Unwind Integral Limit (CP-357). UwndIntgrl Lmt (CP-357) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.

WindIntgrl Lmt (CP-359)

The integral contribution to the trim term is limited to the positive and negative Wind Integral Limit (CP-359). WindIntgrl Lmt (CP-359) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.

Uwnd DerivThd (CP-328)
Unwind Derivative Threshold ($\mathrm{CP}-328$) is the minimum speed error that is required before the derivative term in the PID algorithm gains influence. Increase the Unwind Derivative Threshold to prevent the derivative term from acting on signal noise.

Wind DerivThd (CP-338)
Wind Derivative Threshold (CP-338) is the minimum speed error that is required before the derivative term in the PID algorithm gains influence. Increase the Wind DerivThd (CP-338) to prevent the derivative term from acting on signal noise.

FEEDFORWARD UNWIND P1/2

Kff Auto En (CP-344)

Kff Automatic Enable (CP-344) enables the CX-1102 automatic adjustment of Kff (CP-324) at the specified KffAdjUpt (CP-342) interval in RUN or JOG with the loop closed.

$$
\begin{aligned}
& 1=\mathrm{ON}=\text { Enabled } \\
& 0=\mathrm{OFF}=\text { Disabled (default) }
\end{aligned}
$$

KffAutoSel (CP-343)
Kff Automatic Select (CP-343) selects the axis which will have its Kff value automatically adjusted during RUN at the KffAdjUpdt (CP-342) interval when enabled via KffAuto En (CP-344).

$$
\begin{aligned}
& 3=\text { Unwind \& Wind (default) } \\
& 2=\text { Wind } \\
& 1=\text { Unwind }
\end{aligned}
$$

KffAdjUpdt (CP-342)

Kf Adjus Update (CP-342) sets the sampling period for the Kff calculation when it is enabled. KffAdjUpdt (CP-342) is the time interval between each new Kff calculation and the automatic store to the Kff parameters depending on whether Kff Auto En (CP-344) is enabled.

$$
\begin{aligned}
& 6=10 \text { Min Update } \\
& 5=1 \mathrm{Min} \text { Update } \\
& 4=10 \mathrm{Sec} \text { Update } \\
& 3=1 \mathrm{Sec} \text { Update (default) } \\
& 2=500 \mathrm{mSec} \text { Update } \\
& 1=250 \mathrm{mSec} \text { Update }
\end{aligned}
$$

Uwnd MaxRPM (CP-329)

Unwind Maximum Roll RPM (CP-329) describes the estimated maximum Unwind roll RPM, after consideration of max motor RPM, and motor-to-roll gear ratios. This value, in conjunction with UwndCOMaxVolts (CP-281), affects the feedforward term, Uwnd Kff (CP-324). It may be manually entered, or may be adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Uwnd Kff (MP-23)

Unwind Kff (MP-23) is the feedforward gain for the unwind axis. It translates a target roll RPM into an approximate voltage output, which is then error-trimmed $+/-$ to effect the desired speed. A reasonable accurate feedforward can minimize the need for error trim action, thus improving the response of the control loop. It is automatically adjusted for any change entered into UwndCOMax Volts (CP-281), or UwndMaxRPM (CP-329). It is also adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Uwnd FFwd (MP-24)

Unwind Feedforward (MP-24) displays the estimated voltage command to the drive that will achieve the commanded UwndRRef (MP-21). It is the major portion of the UwndCO Volts (MP-27) signal.

Uwnd Intgrl (MP-25)

Unwind Integral (MP-25) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Uwnd Intgrl is displayed in Volts. Uwnd Intgrl (MP-25) is a conditioned error signal that serves to adjust the UwndCO Volts (MP-27) to help achieve the desired speed. It is part of the PID error correction algorithm.

Uwnd Trim (MP-26)

Unwind Trim (MP-26) displays the value of the output of the PID compensator. Uwnd Trim is displayed in Volts. Uwnd Trim is the combined conditioned error signals that, combined with the Uwnd FFwd (MP-24), will become the UwndCO Volts (MP-27). It is the combination of all three parts of the PID error correction algorithm.

UwndCO Volts (MP-27)

Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is the combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

FEEDFORWARD WIND P2/2

Kff Auto En (CP-344)
Kff Automatic Enable (CP-344) enables the CX-1102 automatic adjustment of Kff (CP-324) at the specified KffAdjUpt (CP-342) interval in RUN or JOG with the loop closed.

$$
\begin{aligned}
& 1=\mathrm{ON}=\text { Enabled } \\
& 0=\mathrm{OFF}=\text { Disabled (default) }
\end{aligned}
$$

KffAutoSel (CP-343)
Kff Automatic Select (CP-343) selects the axis which will have its Kff value automatically adjusted during RUN at the KffAdjUpdt (CP-342) interval when enabled via KffAuto En (CP-344).

$$
\begin{aligned}
& 3=\text { Unwind \& Wind (default) } \\
& 2=\text { Wind } \\
& 1=\text { Unwind }
\end{aligned}
$$

KffAdjUpdt (CP-342)

Kf Adjus Update (CP-342) sets the sampling period for the Kff calculation when it is enabled. KffAdjUpdt (CP-342) is the time interval between each new Kff calculation and the automatic store to the Kff parameters depending on whether Kff Auto En (CP-344) is enabled.

$$
\begin{aligned}
& 6=10 \text { Min Update } \\
& 5=1 \mathrm{Min} \text { Update } \\
& 4=10 \mathrm{Sec} \text { Update } \\
& 3=1 \mathrm{Sec} \text { Update (default) } \\
& 2=500 \mathrm{mSec} \text { Update } \\
& 1=250 \mathrm{mSec} \text { Update }
\end{aligned}
$$

CP-339 WindMaxRPM

Wind Maximum RPM (CP-339) describes the estimated maximum Wind Roll RPM, after consideration of max motor RPM, and motor-to-roll gear ratios. This value, in conjunction with WindCOMax Volts (CP-286), affects the feedforward term, Wind Kff (MP-33). It may be adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Wind Kff (MP-33)

Wind Kff (MP-33) is the feedforward gain for the wind axis. It translates a target roll RPM into an approximate voltage output, which is then error-trimmed $+/-$ to effect the desired speed. A reasonable accurate feedforward can minimize the need for error trim action, thus improving the response of the control loop. It is automatically adjusted for any change entered into WindCOMax Volts (CP-286), or WindMaxRPM (CP-339). It is also adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Wind FFwd (MP-34)

Wind Feedforward (MP-34) displays the estimated voltage command to the drive that will achieve the commanded WindRRef (MP-31). It is the major portion of the WindCO Volts (MP-37).

Wind Intgrl (MP-35)
Wind Integral (MP-35) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Integral is displayed in Volts. Wind Intgrl (MP-35) is a conditioned error signal that serves to adjust the WindCO Volts (MP-37) to help achieve the desired speed. It is part of the PID error correction algorithm.

Wind Trim (MP-36)
Wind Trim (MP-36) displays the value of the output of the PID compensator. Wind Trim is displayed in Volts. Wind Trim is the combined conditioned error signals that, combined with the WindFFwd (MP-34), will become the WindCO Volts (MP-37). It is the combination of all three parts of the PID error correction algorithm.

WindCO Volts (MP-37)
Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is the combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

DANCER SETUP P1/1

Dancer Sp (CP-250)

Dancer Setpoint (CP-250) is the desired nominal dancer operating content (position). Any deviation of actual dancer position will result in a speed adjustment at the follower axis, in the correct direction to return the dancer toward this setpoint position. Units are Web EU. The amount of web material in the dancer station is the content. The angular dancer arm position, or the height of the dancer bar must be translated by the user into terms of web material content.

Dancer Auth (CP-331)
Dancer Authority (CP-331) sets a maximum, or upper limit, on the correction applied to the dancer trimmed axis by reason of displacement of the dancer from its target position. The dancer correction delta, a product of DncrCtnt Err (MP-83) and Dancer Gain (CP-332), is checked against this limit before it is used to adjust the dancer trimmed axis.

Dancer Gain (CP-332)

Dancer Gain (CP-332) adjusts the response to dancer content error. High gain can cause instability. Low gain can cause sluggish correction action.

Dancer Volts (MP-81)

Dancer Volts (MP-81) displays the analog Dancer Signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

Dancer Ctnt (MP-82)

Dancer Content (MP-82) displays the estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

DncrCtnt Err (MP-83)

Dancer Content Error (MP-83) displays the difference between requested Dancer SP (CP-250) and actual Dancer Ctnt (MP-82). This error will be used to trim the speed of the dancer trimmed axis and attempt to restore the dancer content (position) toward the Dancer SP (CP-250).

Dancer Trim (MP-84)

Dancer Trim (MP-84) displays the amount of corrective line speed adjustment applied to the "dancer trimmed" roll. Proportional to the dancer error.

Dancer State (MP-58)

Dancer State (MP-58) displays the present condition of the Dancer LED mounted on the Analog board. The LED conditions indicate various specific Dancer arm states.

$$
\begin{array}{ll}
3=\text { Between limits }- \text { OK } & =\text { LED Green } \\
2=\text { Full limit } & =\text { LED Orange } \\
1=\text { Empty limit } & =\text { LED Red } \\
0=\text { Not calibrated } & =\text { LED Off }
\end{array}
$$

RELATED ITEMS P1/1

Loop Update (CP-341)
Loop Update (CP-341) is the time interval between the Control Output (SigU/SigW) calculations. This interval sets the sampling rate of the PID control loop.

$$
\begin{aligned}
& 3=100 \mathrm{mSec} \text { Update } \\
& 2=10 \mathrm{mSec} \text { Update } \\
& 1=1 \mathrm{mSec} \text { Update (default) }
\end{aligned}
$$

DncrMinDelta (CP-345)
Dancer Minimum Delta (CP-345) sets the smallest dancer movement that will be accepted for diameter calculations. Calculating diameter from extremely small movement can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large movement, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.

UwndMinDelta (CP-346)

Unwind Minimum Delta (CP-346) sets the smallest amount of unwind roll rotation that will be accepted for diameter calculations. Calculating diameter from extremely small rotations can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large rotation, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.

WindMinDelta (CP-347)

Wind Minimum Delta (CP-347) sets the smallest amount of Wind roll rotation that will be accepted for diameter calculations. Calculating diameter from extremely small rotations can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large rotation, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.

Sig Fltr Sel (CP-348)
Signa Filter Select (CP-348) selects the signal to route through a low pass filter. The effect is visible on the speed value. Only one filter routine is available, and should be used on the most erratic input signal. While the damped signal will permit smoother control action, note that it will introduce a small delay in response to the original signal variations.

$$
\begin{aligned}
& 4=\text { Analog In } 2 \\
& 3=\text { Frequency In } 2 \\
& 2=\text { Analog In } 1 \\
& 1=\text { Frequeney In } 1 \\
& 0=\text { Not Used (default) }
\end{aligned}
$$

SigFltrTmConst (CP-349)

Signal Filter Time Constant (CP-349) sets the time constant in milliseconds for the signal filter.
-NOTES-

ALARMS AND LIMITS

Alarms and Limits includes setting alarms and various operating limits.

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Setup / Calibration: Calibration.

The CX-1102 Alarms and Limits parameters are found in the following screens:

- Alarms
- Limits

ALARMS

There are several monitored alarms built-in to the CX-1102. These alarms are included in the PLC Bit-Map and can be used together or separately to activate an output or any other function that is available to the PLC. To customize the alarms for your system, modify the PLC program to include the alarm bit. In the PLC, Web Broken (Bit 93) is defaulted to DO-6, which functions as a indicator for a "Web Broken" condition. The remaining alarms are not included in the default PLC program.

The PLC Bits that are influenced by the alarm Control Parameters are:

PLC	
Bit Name	Description
43 UwRR@0Spd	Unwind Ramped Reference < Zero Speed (CP-370) RPM
44 UwFb @ 0 Spd	Unwind Fb RPM <= Zero Speed (CP-370) RPM
46 UwMaxAcDcl	Unwind FB Accel/Decel > Max Acl/Dcl (CP-372) (EU/Tm)/Sec
47 UwMtrNRsp	Unwind Motor Drive NOT responding for NO Resp Time (CP-372)
48 UwndMaxHz	Unwind Feedback > = Max LS Alm (CP-371) Web EU/Tm
PLC	
Bit Name	Description
53 WdRR@0Spd	Wind Ramped Reference < Zero Speed (CP-370) RPM
54 WdFb@0Spd	Wiind Fb RPM <= Zero Speed (CP-370) RPM
56 WdMaxAcDcl	Wind FB Accel/Decel > Max Acl/Dcl (CP-372) (EU/Tm)/Sec
57 WdMtrNRsp	Wind Motor Drive NOT responding for NO Resp Time (CP-372)
58 WindMaxHz	Wind Feedback > = Max LS Alm (CP-371) Web EU/Tm

PLC
Bit Name Description
53 WdRR@0Sp
Wind Ramped Reference < Zero Speed (CP-370) RPM
Wiind Fb RPM <= Zero Speed (CP-370) RPM
Wind FB Accel/Decel > Max Acl/Dcl (CP-372) (EU/Tm)/Sec
Wind Feedback >= Max LS Alm (CP-371) Web EU/Tm

Since the CX-1102 uses the UwFb@0Spd (PLC Bit 44) for internal control, it is critical that you enter a valid value for Zero Speed (CP-370). "F-Stop" and "H-Stop" use the UwFb@0Spd (PLC Bit 44) to determine when to force the UwdDrvEn (PLC Bit 41) to "0" (Off). If the feedback does not reach zero speed as indicated by UwFb@0Spd (PLC Bit 44) within $1 / 2$ second, then the UwdDrvEn (PLC Bit 41) is reset to "0" (Off).

The CX-1102 has an internal $1 / 2$ second timer that functions with "H-Stop" and "F-Stop". During "HStop" the timer engages only when the "H-Stop" ramp is completed. However, during "F-Stop" the timer engages immediately. If the feedback slows to zero speed before $1 / 2$ second expires, the UwdDrvEn (PLC Bit 41) will immediately reset to "0" for "F-Stop".

Use Max LS Alm (CP-371) to determine the state of the UwndMaxHz (PLC Bit 48). The CX-1102 sets UwndMaxHz (PLC Bit 48) to " 1 " when UwndRollRPM (MP-03) is greater than Max LS Alm (CP-371). Otherwise the CX-1102 resets UwndMaxHz (PLC Bit 48) to " 0 ".

The change in the feedback speed is constantly being compared to MaxAcl/Dcl (CP-272). If the magnitude of the change in Feedback speed is greater than Max Acl/Dcl, then the UwMaxAcDcl
(PLC Bit 46) is set to " 1 ". Otherwise the CX-1102 resets the bit to " 0 ".

If the CX-1102 is in "Run" and the UwndCO Volts (MP-27) is greater than $1 / 8$ the UwndCOMax Volts (CP-281), the LineSpd RRef (MP-42) is greater than the Zero Speed (CP-370) and the feedback speed is less than Zero Speed (CP-370) in excess of the time specified in NO Resp Time (CP-372), then the CX-

1102 sets UwMtrNRsp (bit 47) to " 1 ". Otherwise, the CX-1102 resets UwMtrNRsp (bit 47) to " 0 ".
Any number of problems can be indicated when the CX-1102 sets UwMtrNRsp (bit 47) to " 1 ". For example, it can indicate that neither the drive nor the motor is responding to a nonzero voltage input when the CX-1102 has a nonzero speed reference while in "Run". If this occurs when the motor is turning, it may indicate a loss of feedback. The encoder or encoder wiring could be at fault. If this occurs and
UwndRollRPM (MP-03) displays a nonzero value, then check the feedback scaling and the value for Zero Speed (CP-370). If the motor is not moving, the drive may not be enabled. Check the enable logic and wiring. If the motor is not moving, it could also indicate that the SigU/SigW Control Output signal is not getting to the drive. Check the SigU/SigW Control Output wiring. In addition, there could be physical restrictions to motion or there could be a malfunction in the motor or the drive.

To further customize the alarms there are Control Parameters that you can use to make comparisons, which are reflected in the PLC. The four Control Parameters that compare the value of a user-selected Monitor Parameter to a user-entered Control Parameter value are:

Cmpr1 Val (CP-392)
Cmpr2 Val (CP-393)
Cmpr3 Val (CP-394)
Cmpr4 Val (CP-395)
There are also four Control Parameters that establish the type of comparison between the Monitor Parameter and corresponding Control Parameter. These four Control Parameters are:

> Cmpr1 Parm (CP-380)
> Cmpr2 Parm (CP-381)
> Cmpr3 Parm (CP-382)
> Cmpr4 Parm (CP-383)

In addition, there are four Control Parameters that establish the constant value (or threshold) that acts as the trigger point of comparison between the Monitor Parameter and corresponding comparison type. These four Control Parameters are:

$$
\begin{aligned}
& \text { Cmpr1 Type (CP-386) } \\
& \text { Cmpr2 Type (CP-387) } \\
& \text { Cmpr3 Type (CP-388) } \\
& \text { Cmpr4 Type (CP-389) }
\end{aligned}
$$

Enter the parameter number of the Monitor Parameter that you need for comparison, into one of the four "Cmprl Parm" Control Parameters listed above. Enter the comparison type into the corresponding "Cmpr1 Type " parameter.

For a "less than" comparison, use the '>=' compare type and use the compliment of the Cmpr Out PLC Bit in your PLC program.
For a "less than" or "equal to" comparison, use the '>' compare type with the NOT of the Cmpr PLC Bit in your PLC program.

NOTE: The compare type also determines if the comparison is performed with the signed value or with the magnitudes of the values (absolute values).

Enter the constant value (or threshold) that you want as the trigger point of the comparison into the corresponding "Cmpr1 Val" parameter.

There are four PLC bits that establish the "truth" of the comparison between the three corresponding parameters: Cmpr Parm, Cmpr1 Type and Cmpr Val. These four Control Parameters are:

Cmprl Out (Bit 60)
Cmpr2 Out (Bit 61)
Cmpr3 Out (Bit 62)
Cmpr4 Out (Bit 63)
The result of each comparison is reflected in the corresponding PLC Bit; " 1 " displayed in the corresponding bit indicates that the result of the corresponding comparison is "true". Otherwise, the bit is cleared (" 0 ").

STANDARD P1/3

Zero Speed (CP-370)

When the magnitude of the UwndRollRPM (MP-03) is less than or equal to Zero Speed (CP-370), the UwFb@0Spd bit (44) in the PLC is set to " 1 ". This value, as well as the PLC UwFb@0Spd bit condition, is used in other transparent internal calculations that are based on feedback information.

Max LS Alm (CP-371)
Maximum Line Speed Alarm (CP-371) signals an over-speed condition. When the magnitude of the UwndRollRPM (MP-03) is greater than or equal to Max LS Alm (CP-371), then the UwndMaxHz bit (48) in the PLC is set to " 1 ". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.

UwndMaxRmp (CP-373)
When either the feedback acceleration or the deceleration is greater than or equal to Unwind Maximum Ramp (CP373), then the UwMaxAcDcl bit (46) in the PLC is set to "1". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.

WindMaxRmp (CP-374)
When either the feedback acceleration or the deceleration is greater than or equal to Wind Maximum Ramp (CP374), then the WdMaxAcDcl bit (56) in the PLC is set to "1". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.

NO Resp Time (CP-372)
When the Control Output (SigU) signal is greater than 1/16 UwndCOMax Volts (CP-281) and the UwndRollRPM (MP-03) is less than Zero Speed (CP-370) for longer than the No Resp Time (CP-372), then the UwMtrNRsp bit (47) is set to " 1 ". If this scenario occurs, it is generally an indication that the feedback has been lost. It can also indicate that the drive is not enabled (or faulted out), that theControl Output (SigU) signal is not getting to the drive or that there may be a physical obstruction preventing motion.

CUSTOM P2/3

Cmpr1 Parm (CP-380)
Enter a Monitor Parameter code in Compare 1 Parameter (CP-380) that will act on the value in Cmprl Val (CP392), by using the comparison type that you entered in Cmp1 Type (CP-386). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmprl Out bit (60) in the PLC to " 1 ", which can be used to trigger a user defined indicator.

NOTE: See Appendices: Appendix C for the Monitor Parameters that are not available for the Compare 1 Parameter (CP-380).

Cmpr1 Type (CP-386)

Use Cmpr1 Type (CP-386) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr1 Parm (CP-380) to the value that you entered in Cmpr1 Val (CP-392). If you require a comparison that is not listed, then set the Cmpr1 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than" (<) use "NOT" Magnitude greater than or equal to (>=).

$$
\begin{aligned}
& 6=\text { 'mag }=\text { ' if Magnitude of parm selected by Cmpr1 Parm }=\text { Cmpr1 Val, Cmpr1 Out }=1 \\
& 5=\text { 'mag >=' if Magnitude of parm selected by Cmpr1 Parm >=Cmpr1 Val, Cmpr1 Out }=1 \\
& 4 \text { = 'mag >' if Magnitude of parm selected by Cmpr1 Parm > Cmpr1 Val, Cmpr1 Out = } 1 \\
& 3=\text { ' }=\text { ' if value of parm selected by Cmpr1 Parm = Cmpr1 Val, Cmpr1 Out }=1 \\
& 2=\text { ' }>=\text { ' } \quad \text { if value of parm selected by Cmpr1 Parm >=Cmpr1 Val, Cmpr1 Out }=1 \\
& 1=\text { ' }>\text { ' if value of parm selected by Cmpr1 Parm > Cmpr1 Val, Cmpr1 Out }=1
\end{aligned}
$$

Cmpr1 Val (CP-392)

Enter a value in Cmpr1 Val (CP-392) that will be compared to the Monitor Parameter in Cmpr1 Parm (CP-380), using the comparison type that you entered in Cmpr1 Type (CP-386). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmprl Out bit (60) in the PLC to " 1 ".

Cmpr2 Parm (CP-381)

Enter a Monitor Parameter code in Compare 2 Parameter (CP-381) that will act on the value in Cmpr2 Val (CP393), by using the comparison type that you entered in Cmp2 Type (CP-387). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr2 Out bit (61) in the PLC to " 1 ", which can be used to trigger a user defined indicator.

NOTE: See Appendices: Appendix C for the Monitor Parameters that are not available for the Compare 2 Parameter (CP-381).

Cmpr2 Type (CP-387)
Use Cmpr2 Type (CP-387) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr2 Parm, (CP-381) to the value that you entered in Cmpr2 Val (CP-393). If you require a comparison that is not listed, then set the Cmpr2 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than " (<) use "NOT" Magnitude greater than or equal to ($>=$).

$$
\begin{array}{ll}
6=\text { 'mag }=' & \text { if Magnitude of parm selected by Cmpr2 Parm })=\text { Cmpr2 Val, Cmpr2 Out }=1 \\
5=\text { 'mag }>=' & \text { if Magnitude of parm selected by Cmpr2 Parm) }>=\text { Cmpr2 Val, Cmpr2 Out }=1 \\
4=\text { 'mag }>' & \text { if Magnitude of parm selected by Cmpr2 Parm) }>\text { Cmpr2 Val, Cmpr2 Out }=1 \\
3='=' & \text { if value of parm selected by Cmpr2 Parm) }=\text { Cmpr2 Val, Cmpr2 Out }=1 \\
2=\text { ' }>=' & \text { if value of parm selected by Cmpr2 Parm) }>=\text { Cmpr2 Val, Cmpr2 Out }=1 \\
1=\text { '>' } & \text { if value of parm selected by Cmpr2 Parm) }>\text { Cmpr2 Val, Cmpr2 Out }=1
\end{array}
$$

Cmpr2 Val (CP-393)

Enter a value in Cmpr2 Val (CP-393) that will compared to the Monitor Parameter in Cmpr2 Parm (CP-381), using the comparison type that you entered in Cmpr2 Type (CP-387). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr2 Out bit (62) in the PLC screen to " 1 ".

CUSTOM P3/3

Cmpr3 Parm (CP-382)

Enter a Monitor Parameter in Compare 3 Parameter (CP-382) that will act on the value in Cmpr3 Val (CP-394), by using the comparison type that you entered in Cmp3 Type (CP-388). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr3 Out bit (62) in the PLC to "1", which can be used to trigger a user defined indicator.

NOTE: See Appendices: Appendix C for the Monitor Parameters that are not available for the Compare 3 Parameter (CP-382).

Cmpr3 Type (CP-388)

Use Cmpr3 Type (CP-388) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr3 Parm (CP-382) to the value that you entered in Cmpr3 Val (CP-394). If you require a comparison that is not listed, then set the Cmpr3 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than" (<) use "NOT" Magnitude greater than or equal to(>=).

$$
\begin{array}{ll}
6=' m a g=' & \text { if Magnitude of parm selected by Cmpr3 Parm) }=\text { Cmpr3 Val, Cmpr3 Out }=1 \\
5=\text { 'mag }>= & \text { if Magnitude of parm selected by Cmpr3 Parm) }>=\text { Cmpr3 Val, Cmpr3 Out }=1 \\
4=\text { 'mag }>' & \text { if Magnitude of parm selected by Cmpr3 Parm) }>\text { Cmpr3 Val, Cmpr3 Out }=1 \\
3=\text { '=' } & \text { if value of parm selected by Cmpr3 Parm) }=\text { Cmpr3 Val, Cmpr3 Out }=1 \\
2='>=' & \text { if value of parm selected by Cmpr3 Parm) }>=\text { Cmpr3 Val, Cmpr3 Out }=1 \\
1='>' & \text { if value of parm selected by Cmpr3 Parm) }>\text { Cmpr3 Val, Cmpr3 Out }=1
\end{array}
$$

Cmpr3 Val (CP-394)

Enter a value in Cmpr3 Val (CP-394) that will be compared to the Monitor Parameter in Cmpr3 Parm (CP-382), using the comparison type that you entered in Cmpr3 Type (CP-388). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr3 Out bit (62) in the PLC to "1".

Cmpr4 Parm (CP-383)

Enter a Monitor Parameter in Compare 4 Parameter (CP-383) that will act on the value in Cmpr4 Val (CP-395), by using the comparison type that you entered in Cmpr4 Type (CP-389). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr4 Out bit (63) in the PLC Programming screen to " 1 ", which can be used to trigger a user defined indicator.

NOTE: See Appendices: Appendix C for the Monitor Parameters that are not available for the Compare 4 Parameter (CP-383).

Cmpr4 Type (CP-389)

Use Cmpr4 Type (CP-389) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr4 Parm (CP-383) to the value that you entered in Cmpr4 Val (CP-395). If you require a comparison that is not listed, then set the Cmpr4 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Then " (<) use "NOT " Magnitude greater than or equal to ($>=$).

$$
\begin{array}{ll}
6=' m a g=' & \text { if Magnitude of parm selected by Cmpr4 Parm) }=\text { Cmpr4 Val, Cmpr4 Out }=1 \\
5=\text { 'mag }>=' & \text { if Magnitude of parm selected by Cmpr4 Parm) }>=\text { Cmpr4 Val, Cmpr4 Out }=1 \\
4=\text { 'mag } \gg & \text { if Magnitude of parm selected by Cmpr4 Parm) }>\text { Cmpr4 Val, Cmpr4 Out }=1 \\
3=\text { '=' } & \text { if value of parm selected by Cmpr4 Parm) }=\text { Cmpr4 Val, Cmpr4 Out }=1 \\
2='>=' & \text { if value of parm selected by Cmpr4 Parm) }>=\text { Cmpr4 Val, Cmpr4 Out }=1 \\
1=\text { '>' } & \text { if value of parm selected by Cmpr4 Parm) }>\text { Cmpr4 Val, Cmpr4 Out =1 }
\end{array}
$$

Cmpr4 Val (CP-395)
Enter a value in Cmpr4 Val (CP-395) that will be compared to the Monitor Parameter in Cmpr4 Parm (CP-383), using the boundary type that you entered in Cmpr4 Type (CP-389). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr4 Out bit (63) in the PLC to "1"
-NOTES-

LIMITS P1/2

The Limits screen includes the parameters that limit certain operating conditions. Some appear on other screens that are more relevant to their function.

UwndTrim Auth (CP-356)

The trim contribution to the DAC output is limited to positive and negative Unwind Trim Authority (CP-356).

WindTrim Auth (CP-358)

The trim contribution to the DAC output is limited to positive and negative Wind Trim Authority (CP-358).
UwndIntgrl Lmt (CP-357)
The integral contribution to the trim term is limited to the positive and negative Unwind Integral Limit (CP-357). UwndIntgrl Lmt (CP-357) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.

WindIntgrl Lmt (CP-359)

The integral contribution to the trim term is limited to the positive and negative Wind Integral Limit (CP-359). WindIntgrl Lmt (CP-359) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.

Zero Speed (CP-370)
When the magnitude of the UwndRollRPM (MP-03) is less than or equal to Zero Speed (CP-370), the UwFb@0Spd bit (44) in the PLC is set to " 1 ". This value, as well as the PLC UwFb@0Spd bit condition, is used in other transparent internal calculations that are based on feedback information.

LIMITS P2/2

The Limits screen includes the parameters that limit certain operating conditions. Some appear on other screens that are more relevant to their function.

UwndMinDia (CP-350)

Unwind Minimum Diameter (CP-350) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such as slack web or out-of-round rolls.

UwndMaxDia (CP-351)

Unwind Maximum Diameter (CP-351) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

WindMinDia (CP-352)

Wind Minimum Diameter (CP-352) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

WindMaxDia (CP-353)

Wind Maximum Diameter (CP-353) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.
-NOTES-

BLOCK SETUP

The blocks are used as a quick access to a group of Control Parameters whose values will need to be changed over the course of your system's operation. For example, the Blocks could be used to switch between speed setpoints and ratio setpoints. You can assign up to sixteen Control Parameters to the blocks. There are eight blocks that allow you to assign eight values to each of the sixteen Control Parameters. The blocks can be set up so that the active block (the block currently in use) can be selected through a switch.

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The Block Setup screens are:

- Edit Block Parms
- Edit Blk 0
- Edit Blk 1
- Edit Blk 2
- Edit Blk 3
- Edit Blk 4
- Edit Blk 5
- Edit Blk 6
- Edit Blk 7
-NOTES-

Block Setup

Use the blocks to assign eight different values to a single Control Parameter. Up to sixteen Control Parameters can each be assigned to each of the eight different blocks.

Up to sixteen Control Parameters are assigned to the blocks in Edit Block Parms.

Each one of the Control Parameters that was assigned in Edit Blocks Parms (above) can be assigned eight different parameter values in the Edit Block (0-7) screens.

The block (Edit Block 0-7) that is active determines which of the eight values is used.

You can use either the PLC or the Keypad to change the active block.
To use the PLC to change the active block:
There are 3 PLC bits that are associated with the block selection: Block Select A, Block Select B and Block Select C. Make bits active by setting the bit equal to " 1 ". Select the active block in a binary (octal). The following table represents the PLC Bit logic:

BlkSel C	BlkSel B	BlkSelA	Active Block
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

To use the Keypad to change the active block:
Transfer control to the keypad by entering " 2 " (kypd) in Blk Sel Source (CP-478). To make a block active, enter the block's number in Keypad Blk Sel (CP-479). The active block is displayed in Active Block (MP-51).

DANGER

When you change the active block, the new values are loaded and can operate the system immediately. This can cause abrupt operation.

For more information on selecting and monitoring the active block, refer to System Monitoring (MP)/System Monitor / Control Overrides.

EDIT BLOCK PARMS

Block Parm 1 - Block Parm 16 (CP-500 to CP-515)

The Edit Block Parms screens (pages 1-4) contain sixteen lines (Block Parm 1-16) that allow you to assign sixteen Control Parameters to Block Parms 1 through Block Parms 16 (CP-500 to CP-515). In turn, these Control Parameter assignments are reflected in corresponding lines in the Edit Blocks (0-7) screens (where the Control Parameter values are selected). When you enter a Parameter Code for a specific Control Parameter in a Block Parameter line (Block Parm 1-16) , the parameter's name will appear immediately below that Block Parameter line. Enter a " 0 " in the Block Parameter line(s) that you do not want to assigned Control Parameter. The line immediately below will display "Not Used". Line Spd SP (CP-210) is the default Control Parameter that is assigned to Block Parm 1. You can not assign Monitor Parameters to Edit Block Params.

The graphic matrix below displays the interaction between the Edit Block Parms screens and the Edit Block 0-7 screens:

The Edit Block Parms screens are accessed through

 —> Main Menu / Block Setup <—

Use the Page keys to scroll through pages 2 through 4 of the Edit Block Parms screens. These screens are similar to each other and to the page one screen that is displayed on the previous page. Enter Control Parameter codes in these screens, as noted below.

If you enter a Control Parameter code that is already in use, then the "Not Allowed" messages will flash briefly in the error message bar. If you enter a code that does not exist, the "Not Used" designation (or Parameter Name if the line is in use) beneath the Block Parm line will change to "Not Defined". However, if you enter a code that does not exist and the code number is higher than " 350 ", then the error message "Max Error" will flash briefly in the error message bar.

If you accidently enter too many digits for a code (e.g., 1022), the error message "Field Full" will flash briefly.

EDIT BLOCK PARMS

```
Block Parm 5 ->NOT USED
- Block Parm 6 ->NOT USED
- Block Parm 7 ->NOT USED
- Block Parm 8 ->NOT USED


EDIT BLOCK PARMS
- Block Parm 13
- Block Parm 14
->NOT USED
- Block Parm 15 ->NOT USED
- Block Parm 16 ->NOT USED
\begin{tabular}{|l|l|}
\hline (CP-512) \\
Enter a parameter code. \\
Press the Enter key. \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{Edit Block Parms / Save}

Press the Menu key from any of the Edit Block Parms screens to exit. If you have made changes in any of the screens, a dialog box will pop up and give you the opportunity to either save or to discard your changes.

If you have entered Control Parameters that can not be used in the blocks, then the code for each Control Parameter that can not be used are highlighted, one by one, and the error message "Invalid Parm" will flash five times in the error bar. Change all Control Parameter codes that are highlighted and exit Edit Block Parms again. You can not save changes unless all fo the"Invalid Parm" codes have been changed. Control Parameters that can be used are in the range of CP-202 through CP-206 and CP-209 through CP-249.

If you have entered a combination of 16 Control Parameters that create more internal variables than the CX-1102 can execute, then the error message"Parm Mem Lmt" will flash twice in the error bar. Any new Control Parameter codes that you entered will default back to "zero". Although this scenario is rare, it can occur. Either use different Control Parameters or use fewer Control Parameters.


\section*{EDIT BLOCK 0 THROUGH 7}

\section*{Blk0 Val 1 - Blk7 Val 16 (CP-540 to CP-667)}

Use the Block Values (CP-540 to CP-667) to assign Parameter Values to the Control Parameters that were designated by name in the Edit Block Parms screens (CP-500 to CP-515). Edit Blocks 0-7 allow you to assign up to eight different values to a single Control Parameter by entering a different Parameter Value in each of the Edit Block screens (0-7). The graphic matrix below displays the interaction between the Edit Block Parms screens and the Edit Block 0-7 screens.

The block of Control Parameters and corresponding values that is in current use, is called the "active" block. The active block is selected in either the Keypad Block Select (CP-479) or in the PLC (in combination with the Digital inputs). The active block is monitored by Active Block (MP-51). For more information on selecting and monitoring the active block, refer to System Monitoring (MP) / System Monitor / Control Overrides.

The default setting in the Val 1 line for Blocks 0-7 (Page 1), is Master Setpoint. This line can be reassigned in the Edit Block Parms screens.



Use the Page keys to go scroll through pages 2 through 4 of the Block 0 Data Edit screens. The setup for these screens is identical to the page one screen that is displayed on the previous page. Enter the relevant information in these screens.


Use the Par keys to go scroll through the Block Setup menu and access the additional Edit Block screens (1-7). The set up for these screens is identical to the Block 0 Edit Block screens that are displayed on the previous pages. Enter the relevant Control Parameter values in these screens.


\section*{Edit Block / Save}

Press the Menu key from any of the Edit Block screens to exit. If you have made changes in any of the screens (pages 1-4), a dialog box will popup and give you the opportunity to either save or to discard your changes.

NOTE: Once you have exited the Edit Block screen, if you change the value of a Control Parameter in any other screen (that is not a block screen) and that change can create problems with that Control Parameter when the block is put into use, then the error message "Invalid Blk" will flash briefly in the error message bar. Generally this scenario would only happen if a math error or an undefined operation were created in the block which houses the Control Parameter that changed. For example, If you change the value of a scaling parameter which is also used in a block and the affect that the change has on the block would create an overflow (e.g., a setpoint is too large in relationship to \(\mathrm{CP}-208\) ) then the block would become unusable or an "invalid block."


\title{
PROGRAMMABLE LOGIC CONTROLLER (PLC)
}

\begin{abstract}
This section discusses the setup procedures for the PLC (Programmable Logic Controller). The CX-1102 provides a basic PLC to compliment the motion control operation with I/O flexibility. The PLC allows you to redirect or redefine the eight digital outputs and eight (of the 16) digital inputs. You can also use the PLC to initiate a number of internal functions, or to test the state of status indicators. The PLC includes four timers, four event counters, four latches, and four numerical comparators. The alarms are generated by the PLC. The CX-1102 provides an editor for changing the PLC program without the need of a portable computer or proprietary pendant. The program is presented as a text-based list of commands (instructions) and operands (I/O, contacts, coils).
\end{abstract}

Caution: To avoid damage to your system, the CX-1102 must be calibrated and the motor drive set up before you operate your system. Refer to Drive Setup / Calibration: Calibration.

The PLC screens are:
- PLC Monitor
- PLC Timers
- PLC Event Counters
- PLC Position Counters
- PLC Data Copy
- PLC Digital I/O
- PLC Programming
-NOTES-

\section*{PLC}

The PLC adds functionality to the CX-1102. There are default settings for the PLC, which are generally sufficient for most applications, and whose operations are transparent to the user. There are also PLC screens which allow the user additional access to the PLC in order to expand on the CX-1102's functionality. The PLC has a "scan time" of 2 milliseconds. The scan is divided into two parts:
- The state of the status indicators is determined (this includes the alarms and the results of the Custom alarms) and the PLC-dedicated digital inputs are captured.
- The PLC program is executed and the digital outputs are updated with the results.

Since there is only one copy of the PLC bit map in memory when the PLC program executes, it uses the most current state of the PLC bits. Therefore, if a rung changes the state of a PLC bit value, the new value is then used in subsequent rungs. Though this rule is not violated in the case of the latches, the state of the latches is not determined until after the PLC program has completed. This means that the set and reset PLC bits can change, but only their state at the end of the PLC program will determine the state of the Latch throughout the entire next scan. Likewise, the event counters are not incremented/decremented until after the PLC porgram is completed, and their associated outputs will not change state during the execution of the program.

The PLC program performs the logic on the PLC bits as dictated by the user-entered program. The state of these PLC bits is determined before hand via internal calculations. These bits are PLC bit 2 through PLC bit 99. These bits are consider status information that are set or reset based on their function, current data and the state (or change thereof) of other PLC bits. These bits should never be operands of an OUT command, and therefore the state of these 'status' bits should remain constant throughout the execution of the PLC program.

The scan is summarized as follows:
1. The digital output (from last scan) are output to the actual outputs, the digital inputs are captured as a group and saved for later use.
2. Status bits are setup - state, block select, RUN mode, loop type, event counter maintenance, alarms, compares, set/reset latches.

The Timers are maintained (status bits set/reset if necessary). This ends the first 1 millisecond part of the scan.
3. The digital inputs (stamped at top of 2 millisecond boundary) are copied to PLC bits (while OR'ing in the DI Set (CP-403), and performing One-shot operation on the DI 1 Shot bits, (CP-402), set PLC Bit Set (CP-407) bit, reset PLC Bit Clear (CP-408) bit.
4. Execute the PLC program. This performs only the logic as given by the program. No functions called out by setting a bit to " 1 " in the execution of the program will get executed at this time. Counters are not incremented at this time, and therefore, the counter outputs remain unchanged during the execution. The state of the latches are not determined at this time.
5. The digital out PLC bits are saved, but not sent to the actual outputs at this time. The saved digital output data is output at the top of the next 2 millisecond boundary. This maintains a fixed time interval between the reading of the digital inputs and the writing of the digital outputs.
6. Misc. functions: Block Select A,B,C decoded to select current block, PLC bits UwFrzIngl,

UwndOpnLp, WdFrzIngl, WindOpnLp, LSFrz Ramp, Negate LS are OR'ed in with the Cntrl Latch (CP-340). The result will be used in the next Scaled and Ramped Reference determination, or Control Loop calculation.

The Data Trace enable is maintained.
The Timers are maintained (status bits set/reset if necessary). This ends the \(2^{\text {nd }} 1\) millisecond part of the scan.

The PLC mimics the operation of Relay Logic. In this context, the relay "Coils" can be either energized (ON) or inactive (OFF). Likewise, the relay contacts, whether "open" or "closed", assume only one of the two states at any given time. Therefore, relays are binary devices. The state of a coil or contact can be represented as a " 1 " (ON") or a " 0 " (OFF). This is the basis for the PLC; it treats everything as binary entities with each assigned a particular function and it realizes only one state at any given time. The virtual "contacts" and "coils" that are available to the PLC program are defined in the PLC bit map. The PLC bit map assigns the function of the contacts and coils to a bit (single binary digit) memory location. The PLC program has access to the PLC bit map to logically combine the "contacts" (status) bits to activate (or deactivate), a "coil" bit. For example; the Block Selection default program routes the Digital Inputs DI_8, DI_9 and DI_10 to the Blk Sel A, B, C PLC Bits (coils) respectively. Note that the Digital Inputs are active low - so a closed contact to common (which would be " 0 " voltage on the input) would produce a " 1 " (true \(=\) active) in the corresponding Bit in the PLC bit map. Refer to the PLC Program Operands in Appendices: Appendix L.

The status bits can be based on a binary condition (e.g., the UwndDrvEn /PLC bit 41) or they can be based on the result of a comparison between two nonbinary numbers (e.g., the UwndMaxHz /PLC Bit 48). The UwndMaxHz bit (48) is set (active = normally-open contact closed) when the value of the Feedback signal is greater than the value that you entered into Max LS Alm (CP-371). Most of the numerical comparisons that are associated with the PLC status bits involve one (or more) Control Parameters. Some of the Control Parameters are used to setup the PLC operation. In addition, there are Monitor Parameters to monitor the state of the PLC bits.

The PLC uses a stack-based environment for moving bit data and computing boolean expressions. Your PLC program must conform to this format. Each rung of your ladder-logic program would be programmed as a group of commands (along with their operands) starting with a "LOAD" (or "LD NOT") command and ending with an "OUT" command. The stack allows you to enter a complicated logical combination (rung) without having to separate it into smaller groups (rungs) with temporary coils.

These are the commands:
```

LOAD
LD NOT (Load Not)
AND
AND NOT
OR
OR NOT
XOR (Exclusive OR)
XOR NOT
NOT
OUT
<END>

```

There are three parts to the stack: the Result Register (R); a bit mapped location named "S0" (bit location " 0 "); and a bit mapped location named "S1" (bit location " 1 "). When the stack is lifted with the "LOAD" and "LOAD NOT" commands, the contents of " S 0 " is copied to " S 1 " (the contents of " S 1 " is overwritten) and the contents of the Result Register (R), is copied to "S0" and the contents of the operand (or the complement of) is copied to the Result Register, "R". When the Stack is dropped as in the "AND 0", the "OR 0 ", the "AND NOT 0 " and the "OR NOT 0 " commands, then the contents of "S0" (or its complement) is "AND'ed" or "OR'ed" with the Result Register ( R ) and the result is left in (R). The contents of "S1" is copied to " S 0 " (the contents of " S 0 " is overwritten), and the contents of " S 1 " remains the same. The following example shows the stack before and after the "LOAD" and "AND 0" commands.

Location 08 (DI_8): 1


For commands other than "LOAD" and "LD NOT" with an operand other than " 0 " (S0), there is no stack movement. For example; the "AND 9 DI_9" results in an "AND"s of the contents of Bit Location 09 (DI_9) with the Result Register (R) and the result of the operation stays in the Result Register (R). There is no stack movement and "S0" and "S1" remain the same. The "LOAD" and "LD NOT "commands always lift the stack. The stack drops only when the operand is " 0 " ( S 0 ) for the "AND", "OR", "XOR", "AND NOT", "OR NOT " and "XOR NOT" commands.

\section*{THE COMMANDS}

\section*{1. LOAD}

This starts a new Rung (group of commands). The stack is lifted and the contents of the operand bit is loaded into the Result Register (R).

\section*{2. LD NOT}

Same as "LOAD" but the Result Register is complemented after the load. This is used for starting the rung with a normally-closed contact.

\section*{3. AND}

The contents (the bit value) of the operand bit is AND'ed with the Result Register (R). The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the "S0" register), then the stack is dropped.

\section*{4. AND NOT}

The complement of the operand bit is AND'ed with the Result Register (R). The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the "S0" register), then the stack is dropped. This is typically used to "AND" in a normally-closed contact.
5. OR

The contents (the bit value) of the operand bit is OR'ed with the Result Register ( R ). The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the "S0" register), then the stack is dropped.

\section*{6. OR NOT}

The complement of the operand bit is OR'ed with the Result Register. The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the " S 0 " register), then the stack is dropped. This is typically used to "OR" in a normally-closed contact.

\section*{7. XOR}

The contents (the bit value) of the operand bit is Exclusively OR'ed with the Result Register. The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the "S0" register), then the stack is dropped.

\section*{8. XOR NOT}

The complement of the operand bit is Exclusively OR'ed with the Result Register. The operand is unaffected. The result is retained in the Result Register. If the operand is " 0 " (i.e., the "S0" register), then the stack is dropped. This is typically used to XOR in a normally-closed contact.

\section*{9. NOT}

The contents of the Result Register is complemented. The operand is ignored but must be included in the program - use one of the temporary coil locations or the NOP Opnd (171). This is typically used to complement the result before an "OUT" command. This could be the case if the rung is controlling an activehigh output.
10. NOP

This is a No Operation Command. The command is ignored by the compiler. This can be used to temporarily remove a command.

\section*{11. OUT}

This copies the contents of the Result Register (R), into the operand location. This terminates the rung.

\section*{12. <End>}

This ends the PLC program. It signals the compiler that there are no more valid commands to follow. Every program must be terminated with an "<END>". The operand is ignored but it must be included in the program. Use the NOP Opnd (171).

\section*{The OPERANDS}

The operands are divided into two main areas: the status bits (contacts); and the function bits (coils). The status bits range from bit 2 through bit 95 . Do not use these bits as operands for the "OUT" command, as the results could be unpredictable. The function bits range from bit 100 to bit 219. These are used in conjunction with the "OUT" command to activate the indicated function. Activation of the indicated function occurs when the "OUT" command moves a " 1 " into the bit location (the Result Register contains a " 1 " just prior the "OUT" command). All of the bits that are not defined, are "Reserved" for future expansion. Refer to Appendices: Appendix \(L\) for a complete list of the PLC Program Operands.

Descriptions of the groups of operands and discussion of the associated Control Parameters follow:
Bit 0 is the top of the stack, S 0 (first entry point).
Bit 1 is the bottom of the stack, S 1 , (lowest level).
Bit 2 is fixed at the value of 0 .
Bit 3 is fixed at the value of 1 .
Bit 4 is set to a 1 for the first PLC scan after power-up.
Bits 8 through 15 reflect the values captured on the Digital Inputs 8 through 15, respectively. DI Set (CP-403) can be used to set one or all of these bits even when the corresponding input is not active. This is typically used to test your program without having to actuate the input. DI 1 shot (CP-402) can be used to set one or more of the Inputs (DI_8 through DI_15) to automatically generate a one shot in the PLC bit location (bit 8-15) from an open to closed transition on the input.

Bits 16 through 19 are the output of the latches. This would be the equivalent of the normally-open contact of a latching relay.

Bits 20 through 23 indicate whether the diameter value calculated for either the unwind or wind roll is equal to or greater than the value set in UwndMaxDia (CP-351) or WindMaxDia (CP-353), or that the calculated diameter is equal to or less than the value set in UwndMinDia (CP-350) or WindMinDia (CP-352). If any of these conditions are true, the corresponding PLC bit will be set to one (1).

Bits 24 through 27 are the outputs of the timers. The running time for each timer is compared against the Timer Delay and Timer On-time CP's (CP-410, CP-417) to determine if these output bits should be active (1).

Bit 30 indicates that the Line Speed (MP-40) is greater than or equal to the value set in Max LS Alm (CP-371)
Bit 31 is an indication that the commanded line speed in LineSpd SR (MP-41) is greater than the value for EstMaxLnSp (MP-43).

Bits 32 through 36 are the outputs of the event counters. When the count for each counter reaches the Trigger Count (CP-420, CP-422, CP-424, CP-426, CP-428), the corresponding counter output will be active (1).

Bit 37 indicates that the AC voltage for the control is below specification.
Bits 38 and 39 are set for one scan time when the corresponding position counter reaches or exceeds the Rollover value (CP-368, CP-369). The bit is set for one scan when the rollover occurs and the counter is reset to the " 0 " plus the amount the count is over the rollover value.

Bits 40 through 47 are basic status indicator bits. Bit 40 (UwCOSign) indicates the sign of the Control Output SigU. If CO Polarity is set to NEG (2), Bit 40 operates opposite of the actual voltage convention - if the voltage is negative, this is consider normal for CO Polarity set to NEG and the Bit 40 will be " 0 ".

Bits 48 through 59 are alarm conditions.
Bits 60 through 63 indicate if the corresponding compare result is true (1) or not (" 0 ").
Bits 64 through 67 reflect the value of App Select (CP-202).
Bit 70 has the value of one (1) for \(1 / 2\) second and zero (0) for \(1 / 2\) second continuously. This represents a one second square wave \((1 \mathrm{~Hz})\).

Bits 71 through 76, 78 and 79 indicate the system operating state of the controller. Only one of these bits can be active at a time. These bits are monitor (status) bits only. Do Not use these bits as operands for the "OUT" command. You can not request a state change with these bits.

Bits 80 through 87 indicate the active block. Only one of these bits can be active at a time. These bits are for monitoring status only. Do not use these bits as operands for the "OUT" command. You can not request a new block with these bits. You can do this only through the Blk Sel A,B,C bits.

Bits 88 and 89 indicate a reverse roll direction command to the corresponding drive from the control. These bits may be used to assist in direction changes when using unipolar reversible drives.

Bits 90 and 91 are indicators of the dancers content. Bit 90 indicates when the dancer content is greater than 95\% full, the value in Dancer Ctnt (MP-82) > 95\% of DncrCtntFull (CP-272). Bit 91 indicates when the dancer content is less than 5\% full, the value in Dancer Ctnt (MP-82) < 5\% of DncrCtntFull (CP-272).

Bit 92 indicates when the value for DncrCtntErr (MP-83) is positive.
Bit 93 is an indication of a broken web. If the control is in run state and the non-dancer trimmed roll is rotating (> zero speed) and the dancer is full, this bit is set to one (1).

PLC Bit 94 indicates when the dancer is at its commanded position (CP-250 Dancer SP \(\pm 5 \%\) ).
PLC Bit 95 indicates when dancer trim (MP-84 DancerTrim) is not being applied.
Bits 100 through 107 are used to activate the Digital Outputs 0-7 respectively. The outputs are active low. Therefore, when the "OUT" command moves a 1 into one of these bits, the corresponding output will become active and pull the connected device to common, sinking current as dictated.

Bits 108 through 115 are used for temporary storage. They can be used to store the intermediate results of relatively complicated rungs. They could be referred to as virtual "Control Relays" and they can be used in the logic of several rungs

Bits 116 through 123 are used to set and reset the latches.
BIts 124 through 127 are used to enable the timers.
Bit 128 is used to reset Timer 4 since it retains its state when the Tmr4 En bit (PLC bit 127) is " 0 ".
Bits 130 through 133 are used to increment the corresponding counters. Bit 134 is used to decrement the Counter 4 count. The count is incremented on the transition from a " 0 " to a 1 in the increment or decrement bit.

Bits 135 through 137 are used to reset the corresponding counters. These are level activated; as long as the reset bit remains active ( 1 ), the count will remain at " 0 "

Bit 138 is used to preset the Counter 4 count to the Cntr4 Preset value (CP-429). This is also a level activated function - as long as the reset bit is active, the count will remain at the preset value for Counter 4 even if transitions occur on the increment (or decrement) bits.

Bits 140 through 142 are used to select the active block. This is accomplished in a binary (octal) fashion.
The following table represents the logic:
\begin{tabular}{lccc} 
PLC Bit 142 & \begin{tabular}{c} 
PLC Bit 141 \\
BlkSel B
\end{tabular} & \begin{tabular}{c} 
PLC Bit 140 \\
BlkSel A
\end{tabular} & Active Block \\
& & & \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 3 \\
1 & 0 & 0 & 4 \\
1 & 0 & 1 & 5 \\
1 & 1 & 0 & 6 \\
1 & 1 & 1 & 7
\end{tabular}

Bits 144 through 152 is used to reset the integral term of the PID.
Bits 153 and 154 determine if the material is being transferred onto the bottom of the wind roll or off of the bottom of the unwind roll.

Bit 155 UwRot Rst may be used to reset the Unwind Rotations (MP-09) to zero. When bit 155 is " 1 " the UwndCnts (MP-05) and UwndRot (MP-09) will both be reset to zero.

Bit 156 WdRot Rst may be used to reset the Wind Rotations (MP-19) to zero. When bit 156 is "1" the WdndCnts (MP-15) and UwndRot (MP-19) will both be reset to zero.

Bit 157 may be used to disable Dancer Trim. While this bit is set to one (1) Dancer Trim will not be applied to the dancer trimmed roll.

Bits 158 and 159 are used to negate the CO SIG signal and the Scaled Reference signal, respectively. The Negate CO bit is ignored when operating in Unipolar mode. You can not reverse the polarity of the output in this case. The Negate SR bit is used to reverse the direction of the commanded speed, the Scaled Reference.

Bits 160 and 161 may be used to initiate a "Data Copy" operation where a value is transferred from one parameter to another. See the definitions of CP's 396 thru 399.

Bit 167 may be used to start the "Data Trace" data collection. Refer to the section in Serial Communications Binary protocol for further information regarding the "Data Trace."

Bits 168 and 169 are used as the "Remote" scroll up and scroll down controls. The parameter that will be incremented or decremented is selected by Remote Scroll (CP-400). The Rmt Scroll Rate (CP-401) determines the rate at which the select parameter is incremented or decremented when the corresponding bit is active.

Bits 176 and 177 may be used to illuminate the upper spare LED on the Analog Card. When bit 176 is one (1) the LED will be green. When bit 177 is one (1) the LED will be red. If both are set to one (1) the LED will be orange. If both are zero (0) the LED will be OFF.

Bits 178 and 179 may be used to illuminate the lower spare LED on the Analog Card. When bit 178 is one (1) the LED will be green. When bit 179 is one (1) the LED will be red. If both are set to one (1) the LED will be orange. If both are zero ( 0 ) the LED will be OFF.

Bit 180 may be used to request a change in system state (MP-50 System State) to F-Stop state. This is separate from but may be used in addition to the dedicated F-Stop input.

Bits 182 through 185 may be used for axis Jog requests. Bits 182 and 183 can be used to Jog the unwind roll in the forward or reverse direction. Bits 184 and 185 can be used to Jog the wind roll in the forward or reverse direction. Refer to the section about Jog Control for more information about Jog operation.

Bits 186 and 187 may be used to put the unwind or wind control loop into open loop.
Bits 200 and 201 are used to indicate when the unwind and wind are in "open loop" control. When the corresponding axis is in "open loop" the bit will be set to one (1).
Bits 204 through 211 indicate the operating state of the Unwind Axis. Only one of these bits can be active at a time. These bits are monitor (status) bits only. Do Not use these bits as operands for the "OUT" command. You can not request a state change with these bits.

Bits 212 through 219 indicate the operating state of the Wind Axis. Only one of these bits can be active at a time. These bits are monitor (status) bits only. Do Not use these bits as operands for the "OUT" command. You can not request a state change with these bits.

\section*{PROGRAMMING EXAMPLES}

\section*{The Basic Rung - Moving Bit Data}

Since the PLC is based on bit data, a bit value is moved from one location to another. The most basic rung (a normally open contact energizing a coil) is implemented in the PLC program by moving bit data.


The value of UwMaxFbSpd bit (contact) is loaded into the Result Register ( R ) with the "LOAD 45
UwMaxFbSpd" command and copied to the Digital Output DO_1 bit location (coil) with the "OUT" command. When the UwMaxFbSpd bit is set (1), the DO_1 bit will get set also. As a result, the actual DO_1 pin will be active - pulled low to sink current and possibly energize an external-relay coil. All rungs (groups of commands) must start with a "LOAD" or "LD NOT" command and end with an "OUT" command. "LD NOT" starts the rung with a normally-closed contact.

Since the "OUT" command does not change the value of the Result Register (R), you can move the result of a rung to more than one Bit location without starting a new rung.


Often it is necessary to combine the state of more than one PLC bit (contact) to determine if another bit (coil) should be energized. The series connection of two contacts represents the "ANDing" of the states; both contacts need to be closed in order for energy to flow. The "AND" command is used to "AND" two PLC bits (contacts) together. The following example shows how to program a simple series connected rung.


Similarly, the "OR" command is used to "OR" two PLC bits (contacts) together. This implements the ladder logic of parallel connected contacts as the following example illustrates.


This can be expanded to include more bits.


You can combine "AND's" and "OR's" to implement both the series and parallel connections.


The order of the program commands effect the outcome. The result of each command is placed in the Result Register \((\mathrm{R})\), which is then used in the next operation.

The exclusive "OR" command ("XOR", "XOR NOT") can be used to act on one of two true conditions, but not if both are true at the same time. The truth table for the "XOR" and "XOR NOT" is given by ( \(1=\) true):
\begin{tabular}{|c|c|c|}
\hline\(R\) & Operand & XOR \\
\hline 0 & 0 & 0 \\
XOR NOT \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{tabular}

The following example implements an exclusive "OR" between Cntr1 Out and Cntr2 Out using ladder logic. The program commands use standard "AND" and "OR" logic.


This programming can be greatly simplified with the "XOR" command as follows.


The "AND/OR" programming of the exclusive "OR" function above illustrates more complicated logic than we have seen thus far. It involves not only the use of normally-closed contacts, but the use of a second "LOAD" command to start the second branch, or sub-rung. If you understand the stack movement, the programming should seem quite obvious. Consider the following example:


Assume the values of the Digital Input Bits DI_8, 9, 10, 11 are 1,0,0,0 respectively. The "S1" and "S0" Bits are " 0 " to start. The Result Register is also " 0 " to start.
The stack movement proceeds as follows:
Before "LOAD 8 DI_8":
S1: 0
5-98 S0: 0
R: 0

S1: 0
S0: 0
R: 0
Another example:


Assume DI_8,9,10,11,12 have values of \(1,1,0,1,1\)

Before "LOAD 8 DI_8":
S1: 0
S0: 0
R: 0

After "LOAD 8 DI_8" (stack is lifted)
S1: 0
S0: 0
R: 1

After "AND 9 DI_9":
S1: 0
S0: 0
R: 1

After "LOAD 10 DI_10" (stack is lifted):
S1: 0
S0: 1
R: 0
After "LOAD 11 DI_11" (stack is lifted):
S1: 1
S0: 0
R: 1

After "OR 12 DI_12":
S1: 1
S0: 0
R: 1

After "AND 0 S0" (stack falls):
S1: 1 (S1 remains the same after the shift down)
S0: 1
R: 0
After "OR 0 S 0 " (stack falls):
S1: 1
S0: 1
R: 1
After "OUT 101 D0_1":
S1: 1
S0: 1
R: 1

The ladder diagram can be constructed differently to simplify the programming.


In fact, most rungs can be simplified to require only one additional "LOAD" (other than the opening "LOAD") and one operation with the "S0" register (i.e., the "S1" register would not be needed).

\section*{The Latches}

There are four latches that are available with the PLC. Each has two inputs and one output. The output reflects the state of the latch, either " 1 " (ON) or " 0 " (Off). When the set input is " 1 " (true), the state of the latch (the output) will be " 1 " (On). When the reset input is " 1 " (true), then the state of the Latch will be "O" (Off). The set and reset inputs need only be true for one scan. The latch will retain its state (while the power is "On") until the opposite input becomes true. If both inputs are " 1 " (true) at the same time, the state of the latch will be "0" (Off).

The set inputs (act as coils) are labelled:
Lch1 Set (PLC Bit 116)
Lch2 Set (PLC Bit 117)
Lch3 Set (PLC Bit 118)
Lch4 Set (PLC Bit 119)

The reset inputs (act as coils) are labelled:

Lch1 Rst (PLC Bit 120)
Lch2 Rst (PLC Bit 121)
Lch3 Rst (PLC Bit 122)
Lch4 Rst (PLC Bit 123)

The outputs (used as contacts or status) are labelled:

Lch1 Out (PLC Bit 16)
Lch2 Out (PLC Bit 17)
Lch3 Out (PLC Bit 18)
Lch4 Out (PLC Bit 19)

A latch can be used to reverse the direction of motion with two sensors, one for forward, one for reverse. The sensors will only be active temporarily, so the latch retains the state until the opposite sensor is reached. The forward sensor is connected to DI_10, the reverse input to DI_11.

\section*{PLC MONITOR}

Use the PLC Monitor screens to monitor the state of all the PLC operands. Pages 2, 3 and 4 of the screens display the PLC bits in sequential order. Press the "help" key on each line to view the names for each bit. The Help screen will highlight the bits that are active.

Page 1 of the PLC Monitor screens displays the parameters that select the PLC bits and monitor the PLC. Use the Control Parameters Bit ; PLC Monitor 1 (CP-405) and PLC Monitor 2 (CP-406) to select a bit. The name and value of the bit that you choose is displayed in the corresponding Monitor Parameters ; PLC Mon 1 Val (MP-108) and PLC Mon 2 Val (MP-109). The default names for these Monitor Parameters (PLC Mon 1 Val and PLC Mon 2 Val ) are replaced by the name and value of the PLC Bits selected in PLC Monitor 1 (CP-405) and PLC Monitor 2 (CP-406). You can also use the Code key when you are in any parameter screen to display the PLC Bit names and values of PLC Mon 1 Val (MP-108) or PLC Mon 2 Val (MP-109). You can also customize the Status screen to display them.

DI Set (CP-403) simulates an active low condition on one of the digital inputs, DI_8 through DI_15, without having to physically short the input connector to common. Enter a number with a " 1 " in the bit location corresponding to the digital input you want to force active. The action will be reflected in PLC 15-8 (MP110), which displays the bit values for the digital inputs DI_8 through DI_15.

PLC Bit Set (CP-407) and PLC Bit Clear (CP-408) allow you to force a PLC Bit "On" (1) or "Off" (0). You can set (or clear) one of the status bits (contacts), PLC Bits 8-95, but you can not control a PLC Bit (coil) that is controlled by the PLC program (with the "OUT" command). Enter the number of the PLC Bit that you want to set (1) into PLC Bit Set (CP-407) and the number that you want to clear (0) into PLC Bit Clear (CP408). When you are done testing, enter a "0" into PLC Bit Set (CP-407) and PLC Bit Clear (CP-408) . They will automatically default back to PLC Bits 3 (One) and 2 (Zero ), respectively.

\section*{PLC MONITOR P1/4}

\section*{PLC Monitor 1 (CP-405)}

PLC Monitor 1 (CP-405) determines which PLC bit will be monitored in PLC Mon 1 Val (MP-108). The PLC Mon 1 Val (MP-108) displays the name of the bit rather than "PLC Mon 1 Val". To select a PLC bit to monitor, enter the number of the bit or by use the 'Scroll' keys (^ or v) to scroll through the list. This bit can be monitored in any screen when the code select line set to PLC Mon 1 Val (MP-108). For the bit list, refer to Appendices: Appendix L.

\section*{PLC Mon 1 Val (MP-108)}

PLC Monitor 1 Value (MP-108) displays both the description and the value of the PLC bit that was selected in PLC Monitor 1 (CP-405). Please note that a description of the PLC bit appears on the display line instead of the parameter name (PLC Mon 1 Val).

\section*{PLC Monitor 2 (CP-406)}

PLC Monitor 2 (CP-406) functions identically to PLC Monitor 1 (CP-405). See above.

\section*{PLC Mon 2 Val (MP-109)}

PLC Monitor 2 Value (MP-109) functions identically to PLC Monitor 1 Value (MP-108). See above.

\section*{DI Set (CP-403)}

Digital Input Set (CP-403) simulates an "ACTIVE" condition on any or all of the PLC dedicated Digital Inputs (DI 15..8). Digital Input Set (CP-403) is logically OR'ed with the actual DI \(15 . .8\) (MP-101) bits to form the PLC 15-8 (MP-110) bits. The PLC 15-8 (MP-110) bits are used by the PLC logic. The value of DI Set (CP-403) will not effect the actual DI \(15 . .8\) (MP-101) value, rather, DI \(15 . .8\) (MP-101) reflects the present status of the actual inputs. Enter a " 1 " in a bit location to simulate an active condition on the corresponding input. DI 15 to DI 8 get mapped into Bit 7 to Bit 0. Page two of the "Help" screen displays inputs 15..8. Refer to Appendices: Appendic C.

PLC 15-8 (MP-110)
PLC 15-8 (MP-110) displays the status of PLC bits 15-8. A " 1 " in any bit indicates that the input is "active". The digital inputs are active low. Page one of the "Help" screen displays the bit map for PLC 15-8. Also refer to Appendices: Appendic C.

\section*{PLC Bit Set (CP-407)}

PLC Bit Set (CP-407) forces a PLC bit to be set at " 1 ". Enter the number of the bit that you want to set at " 1 ". PLC Bit Set (CP-407) tests your PLC program rather than commanding a direct operation. The bit is set prior to the PLC program execution but after all the inputs, comparisons, timers and counters have had their status bits set up. However, the PLC could clear this bit and unpredictable results can occur. Do not attempt to set a PLC bit that is controlled by an OUT instruction in the PLC program. If you need to force an output, use DIG I/O TEST in the diagnostics screen. For the bit list, refer to Appendices: Appendix L.

\section*{PLC Bit Clear (CP-408)}

PLC Bit Clear (CP-408) forces a PLC bit to be reset to " 0 ". Enter the number of the bit that you want to clear. PLC Bit Clear (CP-408) tests your PLC rather than to commanding a direct operation. The bit is cleared prior to the PLC program execution but after all the inputs, comparisons, timers and counters have set up their status bits. However, the PLC could set this bit and unpredictable results can occur. Do not attempt to clear set a PLC bit that is controlled by an OUT instruction in the PLC program. If you need to force an output, use DIG I/O TEST in the diagnostics screen. For the bit list, refer to Appendices: Appendix L.

\section*{PLC MONITOR P2/4}

PLC 15-8 (MP-110)
PLC 15-8 (MP-110) displays the status of PLC bits 15-8. A " 1 " in any bit indicates that the input is "active". The digital inputs are active low. Page one of the "Help" screen displays the bit map for PLC 15-8. Also refer to Appendices: Appendic C.

PLC 23-16 (MP-111)
PLC 23-16 (MP-111) displays the status of the internal PLC status bits 23-16. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 23-16. Also refer to Appendices: Appendic C.

PLC 31-24 (MP-112)
PLC 31-24 (MP-112) displays the status of the internal PLC status bits 31-24. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 31-24. Also refer to Appendices: Appendic C.

PLC 39-32 (MP-611)
PLC 39-32 (MP-113) displays the status of the internal PLC status bits 39-32. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 39-32. Also refer to Appendices: Appendic \(C\).

\section*{PLC 47-40 (MP-114)}

PLC 47-40 (MP-114) displays the status of the internal PLC status bits 47-40. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 47-40. Also refer to Appendices: Appendic \(C\).

PLC 55-48 (MP-115)
PLC 55-48 (MP-115) displays the status of the internal PLC status bits 55-48. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 55-48. Also refer to Appendices: Appendic C.

PLC 63-56 (MP-116)
PLC 63-56 (MP-116) displays the status of the internal PLC status bits 63-56. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 63-56. Also refer to Appendices: Appendic \(C\).

PLC 71-64 (MP-117)
PLC 71-64 (MP-117) displays the status of the internal PLC status bits 71-64. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 71-64. Also refer to Appendices: Appendic C.

PLC 79-72 (MP-118)
PLC 79-72 (MP-118) displays the status of the internal PLC status bits 79-72. A "1" in any bit indicates that the bit is "active". These bits are only used to monitor the operating state of the CX-1102. Page one of the "Help" screen displays the bit map for PLC 79-72. Also refer to Appendices: Appendic C

PLC 87-80 (MP-119)
PLC 87-80 (MP-119) displays the status of the internal PLC status bits 87-80. A "1" in any bit indicates that the bit is "active". These bits are only used to monitor the parameter block that is active. Page one of the "Help" screen displays the bit map for PLC 87-80. Also refer to Appendices: Appendic C.

PLC 95-88 (MP-120)
PLC 95-88 (MP-120) displays the status of the internal PLC status bits 95-88. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 95-88. Also refer to Appendices: Appendic \(C\).

\section*{PLC MONITOR P3/4}

PLC 107-100 (MP-121)
PLC 107-100 (MP-71) displays the status of PLC bits 107-100. A " 1 " in any bit indicates that the output is "active". The digital outputs are active low (current sinking). Page one of the "Help" screen displays the bit map for PLC 107-100. Also refer to Appendices: Appendic C.

PLC 115-108 (MP-122)
PLC 115-108 (MP-122) displays the status of the internal PLC control bits 115-108. A " 1 " in any bit indicates that the bit is "active". These internal bits (control relays) can be used as global "control relays". For example, they can be used to create one-shots or latches. They can also be used to simplify programming. Page one of the "Help" screen displays the bit map for PLC 115-108. Also refer to Appendices: Appendic C.

PLC 123-116 (MP-123)
PLC 123-116 (MP-123) displays the status of the internal PLC control bits 123-116. A" " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 123-116. Also refer to Appendices: Appendic C.

PLC 131-124 (MP-124)
PLC 131-124 (MP-124) displays the status of the internal PLC control bits 131-124. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 131-124. Also refer to Appendices: Appendic C.

PLC 139-132 (MP-125)
PLC 139-132 (MP-125) displays the status of the internal PLC control bits 139-132. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 139-132. Also refer to Appendices: Appendic C.

PLC 147-140 (MP-126)
PLC 147-140 (MP-126) displays the status of the internal PLC control bits 147-140. A " 1 " in any bit indicates that the bit is "active". Blk Sel A, B, C select the block that is active, if Blk Sel Source (CP-478) has been set to "1" (DgIn). Page one of the "Help" screen displays the bit map for PLC 147-140. Also refer to Appendices: Appendic C.

PLC 155-148 (MP-127)
PLC 155-148 (MP-127) displays the status of the internal PLC control bits 155-148. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 155-148. Also refer to Appendices: Appendic C.

PLC 163-156 (MP-128)
PLC 163-156 (MP-128) displays the status of the internal PLC control bits 163-156. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 163-156. Also refer to Appendices: Appendic C.

PLC 171-164 (MP-129)
PLC 171-164 (MP-129) displays the status of the internal PLC control bits 171-164. A" " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 171-164. Also refer to Appendices: Appendic C.

PLC 179-172 (MP-130)
PLC 179-172 (MP-130) displays the status of the internal PLC status bits 179-172. None of these bits are presently active. They are reserved for future use. Page one of the "Help" screen displays the bit map for PLC 179-172. Also refer to Appendices: Appendic C.

\section*{PLC MONITOR P4/4}

PLC 187-180 (MP-131)
PLC 187-180 (MP-131) displays the status of the internal PLC control bits 187-180. A " 1 " in any bit indicates that the output is "active". Page one of the "Help" screen displays the bit map for PLC 187-180. Also refer to Appendices: Appendic C.

PLC 195-188 (MP-132)
PLC 195-188 (MP-132) displays the status of the internal PLC control bits 195-188. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 195-188. Also refer to Appendices: Appendic C.

PLC 203-196 (MP-133)
PLC 203-196 (MP-133) displays the status of the internal PLC control bits 203-196. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 203-196. Also refer to Appendices: Appendic C.

PLC 211-204 (MP-134)
PLC 211-204 (MP-134) displays the status of the internal PLC control bits 211-204. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 211-204. Also refer to Appendices: Appendic C.

PLC 219-212 (MP-135)
PLC 219-212 (MP-135) displays the status of the internal PLC control bits 219-212. A " 1 " in any bit indicates that the bit is "active". Page one of the "Help" screen displays the bit map for PLC 219-212. Also refer to Appendices: Appendic C.
-NOTES-

\section*{PLC TIMERS}

The are four timers that work in conjunction with the PLC. Each timer can be set up to generate a pulse. The timers operate with 1 millisecond resolution. However, when the timer times out and the timer output becomes active, the PLC program may not react for another millisecond because of the two millisecond scan time. Therefore, enter the time values at " 1 " or " 2 " milliseconds shorter than you actually need to compensate. The timer outputs reflect the operation of an On-delay timer. If you need an Off-delay operation, use the "NOT" (complement) of the output. Timer 4, retains the accumulated time even when the Enable is deactivated.

The operation of each timer is dictated by their respective delay and on-time parameters. The following shows a typical time-trace of the Tmr1 Out when Tmr1 En changes from " 0 "to " 1 ". Tmr1 Delay (CP-410) equals " 0.100 " Seconds and Tmr1 on Tm (CP-411) equals " -1 ".


The following shows a time-trace of the Tmr1 Out when Tmr1 En changes from " 0 " to " 1 ". Tmr1 Delay (CP410) equals " 0.100 " Seconds and Tmr1 on Tm (CP-411) equals " 0.050 " Seconds.


\section*{PLC TIMERS P1/1}

\section*{Tmr1 Delay (CP-410)}

Timer 1 Delay (CP-410) is the time, in seconds, from which Timer 1 becomes enabled (Tmr1 En bit going from " 0 " to " 1 ") until Tmr1 Out bit (24) in the PLC is going active (1). When the Tmr1 En bit (124) returns to " 0 ", the Tmr1 Out bit (24) is reset to " 0 " and the delay-time is reset to " 0 ".

\section*{Tmr1 on Tm (CP-411)}

Timer 1 on Time (CP-411) is the time, in seconds, from which Timer 1 is going active \((=1)\) until Tmr1 Out is going inactive (back to " 0 "). When the Tmr1 En bit (124) returns to " 0 ", the Tmr1 Out bit (24) is reset \(=\) " 0 " and the ontime is reset to " 0 ". If you want Timer 1on-time to be infinite ("On" until Tmr1 is disabled with Tmr1 En = "0"), then enter a value of " -1 " into Tmr1 on Tm (CP-411).

\section*{Tmr2 Delay (CP-412)}

Timer 2 Delay (CP-412) is the time in seconds from which Timer 2 becoming enabled (Tmr2 En bit going from " 0 " to " 1 ") until Tmr2 Out bit (25) in the PLC going active (1). When the Tmr2 En bit (125) returns to " 0 ", the Tmr2 Out bit (25) is reset to " 0 " and the delay-time is reset to " 0 ".

Tmr2 on Tm (CP-413)
Timer 2 on Time (CP-413) is the time, in seconds, from which Timer 2 is going active (=1) until Tmr2 Out is going inactive (back to " 0 "). When the Tmr2 En bit (125) returns to " 0 ", the Tmr2 Out bit (25) is reset \(=\) " 0 " and the ontime is reset to " 0 ". If you want Tmr2 on-time to be infinite ("On" until Tmr2 is disabled with Tmr2 En = " 0 "), then enter a value of " -1 " into Tmr2 on Tm (CP-413).

\section*{Tmr3 Delay (CP-414)}

Timer 3 Delay (CP-414) is the time, in seconds, from which Timer 3 becomes enabled (Tmr3 En bit going from " 0 " to " 1 ") until Tmr3 Out bit (26) in the PLC is going active (1). When the Tmr3 En bit (126) returns to " 0 ", the Tmr3 Out bit (26) is reset to " 0 " and the delay-time is reset to " 0 ".

Tmr3 on Tm (CP-415)
Timer 3 on Time (CP-415) is the time, in seconds, from which Timer 3 is going active \((=1)\) until Tmr3 Out is going inactive (back to " 0 "). When the Tmr3 En bit (126) returns to " 0 ", the Tmr3 Out bit (26) is reset \(=\) " 0 " and the ontime is reset to " 0 ". If you want Timer 3 on-time to be infinite ("On" until Tmr3 is disabled with Tmr3 En = " 0 "), then enter a value of " -1 " into Timer 3 on Time (CP-415).

\section*{Tmr4 Delay (CP-416)}

Timer 4 Delay (CP-416) is the time, in seconds, from Timer 4 becoming enabled (Tmr4 En bit going from " 0 " to " 1 ") toTmr4 Out bit (27) in the PLC going active (1). If Tmr4 becomes disabled, the delay-time is retained so the timing can continue when Tmr4 is re-enabled. The Tmr4Rst bit (128) in the PLC must be used to reset the delay time to " 0 ".

Tmr4 on Tm (CP-417)
Timer 4 on Tm (CP-417) is the time, in seconds, from Tmr4 Out going active (= 1) until Tmr4 Out going inactive (back to " 0 "). When Tmr4 becomes disabled, the on-time is retained so the timing can continue when Tmr4 is reenabled. The Tmr4 Rst bit (128) in the PLC must be used to reset the on-time to " 0 ". If you want Tmr4 on-time to be infinite ("On" until Tmr4 is reset with Tmr4 Rst =1) then enter a value of "-1" in Tmr4 on Tm (CP-417).

Tmr4 Time (MP-107)
Timer 4 Time (MP-107) displays the elapsed time, in seconds, for Timer 4 during the delay part of it's operation.
—NOTES-

\section*{PLC COUNTERS}

There are four event counters that are associated with the PLC. One of these counters functions as an up/ down counter. The other three counters operate as up-counters. The maximum count rate is approximately 100 counts per second \((100 \mathrm{~Hz})\). The up-counters all have upper trigger values associated with them. When the count reaches this trigger value, the counter output will be set automatically to " 1 ". The count will continue past the trigger level when more transitions occur on the Increment PLC Bit. However, as long as the count is equal to or greater than the (up-counter) trigger level, the counter output PLC Bit will be " 1 ". Each up-counter has a reset PLC bit associated with it to reset the count to " 0 ". The up/down counter has a preset value that is loaded into the counter when the counter reset PLC Bit is set to a "1". Special Control Parameters hold the current count of the counters. As a result, the values are retained during a power-down. In addition, you can enter a new value into the count or increment/decrement the value with the scroll keys. The up/down counter has a down count trigger value and an associated output to indicate when the count is less than or equal to this trigger level.

The position counters that are associated with Unwind Encoder and Wind Encoder inputs are available for monitoring as well as for use in the numerical comparators. These counters are also used to determine the position error, which in turn drives the zero-error and position loops. These counters count pulses for nonquadrature ( x 1 ) encoders or count edges for quadrature ( x 4 ) encoders. You can set the count at which the counters rollover (to " 0 ") with UwndCtntRO (CP-368) and WindCtntRO (CP-369). When the positioncounter count reaches (or exceeds) the rollover value, the counter is reset to " 0 " (plus any count over the rollover value) and the rollover bit in the PLC is set (1) for one scan (one-shot). The rollover bits for Unwind Encoder and Wind Encoder inputs are UwndCtntRO (PLC Bit 38) and WindCtntRO (PLC Bit 39) respectively. The counters can be preset with the corresponding preset values.

\section*{PLC EVENT CNTRS P1/1}

\section*{Cntr1 Cnt (CP-421)}

Counter 1 Count (CP-421) is the current count for "Counter 1". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntrl Inc bit (130). Counter 1 Count is the default batch counter. Either use the "Scroll" keys or enter a new number to change this value. When the PLC program sets Cntr1 Rst bit (135) to " 1 ", then the Counter 1 Count (CP-421) resets to " 0 ".

\section*{Cntr1 Trig (CP-420)}

When Counter 1 Count (CP-421) is greater than or equal to Counter 1 Trigger (CP-420), then the Cntr1 Out bit (32) in the PLC is set to " 1 ". If the count is less than, Cntr1 Out bit (32) will equal " 0 ".

\section*{Cntr2 Cnt (CP-423)}

Counter 2 Count (CP-423) is the current count for "Counter 2". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr1 Inc bit (131). Counter 2 Count is the default batch counter. Either use the "Scroll" keys or enter a new number to change this value. When the PLC program sets Cntr1 Rst bit (136) to " 1 ", then the Counter 2 Count (CP-423) resets to " 0 " .

\section*{Cntr2 Trig (CP-422)}

When Counter 2 Count (CP-423) is greater than or equal to Counter 2 Trigger (CP-422), then the Cntr2 Out bit (33) in the PLC is set to " 1 ". If the count is less than, Cntr2 Out bit (33) will equal " 0 ".

\section*{Cntr3 Cnt (CP-425)}

Counter 3 Count (CP-425) is the current count for "Counter 3". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr3 Inc bit (132). Counter 3 Count is the default batch counter. Either use the "Scroll" keys or enter a new number to change this value. When the PLC program sets Cntr3 Rst bit (137) to " 1 ", then the Counter 3 Count (CP-425) resets to " 0 ".

\section*{Cntr3 Trig (CP-424)}

When Counter 3 Count (CP-425) is greater than or equal to Counter 3 Trigger (CP-424), then the Cntr3 Out bit (34) in the PLC is set to " 1 ". If the count is less than, Cntr3Out bit (34) will equal " 0 ".

\section*{Cntr4 Cnt (CP-427)}

Counter 4 Count (CP-427) is the current count for "Counter 4". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr4 Inc bit (133). Counter 4 Count is the default batch counter. Either use the "Scroll" keys or enter a new number to change this value. When the PLC program sets Cntr4 Rst bit (138) to " 1 ", then the Counter 4 Count (CP-427) resets to " 0 ".

\section*{Cntr4 Preset (CP-429)}

When the Counter 4 Rst bit in the PLC Programming screen is set to " 1 ", then Counter 4 Cnt (CP-427) is set to and held at the Counter 4 Preset (CP-429) value. If you need a transition preset, then create a one-shot or, when possible, use the DI 1 Shot (CP-402) mask.

Cntr4 TrigUp (CP-426)
When Counter 4 Count (CP-427) is greater than or equal to Counter 4 Trigger Up (CP-426), then the Cntr4 UpOut bit (35) in the PLC is set to " 1 ". If the count is less than, Cntr4UpO bit (35) will equal " 0 ".

\section*{Cntr4 TrigDn (CP-428)}

When Counter 4 Count (CP-427) is less than or equal to Counter 4 Trigger Down (CP-428), then the Cntr4DnO bit (36) in the PLC is set to " 1 ". If the count is greater than, Cntr4DnO bit (36) will equal " 0 ".

\section*{PLC DATA COPY P1/1}

The PLC Data Copy function is used to copy CP or MP data (values) to a different CP (copy from source to destination). When a 0 to 1 transition occurs in the DataCopy 1 PLC bit (160), the value of the CP or MP selected by Copy Source 1 (CP-396) is copied to the CP selected by Copy Dest (CP-397). When a 0 to 1 transition occurs in the DataCopy 2 PLC bit (161), the value of the CP or MP selected by Copy Source 2 (CP-398) is copied to the CP selected by Copy Dest 2 (CP-399). The values of the Copy Source CP or MP is unaffected by the data copy function.

Copy Source 1 (CP-396)
Copy Source 1 (CP-396) identifies the CP or MP whose value is copied to Copy Dest 1 when a 0 to 1 transition occurs in the DataCopy 1 PLC bit.

Copy Dest 1 (CP-397)
Copy Dest 1 (CP-397) identifies the CP that takes on the value of the CP or MP identified by Copy Source 1 when a 0 to 1 transition occurs in the DataCopy 1 PLC bit.

Copy Source 2 (CP-398)
Copy Source 2 (CP-398) identifies the CP or MP whose value is copied to Copy Dest 2 when a 0 to 1 transition occurs in the DataCopy 2 PLC bit.

Copy Dest 2 (CP-399)
Copy Dest 2 (CP-399) identifies the CP that takes on the value of the CP or MP identified by Copy Source 2 when a 0 to 1 transition occurs in the DataCopy 2 PLC bit.

\section*{DIGITAL I/O}

The PLC / Digital I/O, (page 1) screen displays parameters that are associated with the digital inputs for the PLC (DI-8 through DI-15). The DI-14 and DI-15 are routed to the Scroll Up bit (168) and Scroll Dn bit (169) respectively by the default PLC program. This allows these digital inputs to control the remote scrollup and remote scroll-down function. The remote-scroll function can be assigned to almost any of the Control Parameters. Use Remote Scroll (CP-400) to select the Control Parameter that you want to assign to the remote scroll function. The rate of change when the PLC Bit is " 1 " (On or Digital Input active with default PLC program) is determined by Rmt Scroll Rate (CP-401). This is the number of increments/decrements to the least significant digit every second that the PLC bit (input) is active. Use Table 5-1 for the time-between increments or decrements of the various remote scroll rates.

DI 1 Shot (CP-402) determines which digital inputs will cause the corresponding PLC bit (8-15) to be " 1 " (On) for one PLC scan (one-shot) when an open-to-closed (active) transition occurs on the input. This is the default one-shot for the PLC.
\begin{tabular}{|c|c|c|}
\hline Remote Scroll Rate & Increment Interval (Time) & Number of 10 - mSec Samples per Interval \\
\hline 1 & \(1000 \mathrm{mSec}=1 \mathrm{Sec}\) & 100 \\
\hline 2 & 500 mSec & 50 \\
\hline 3 & \(333 \mathrm{mSec}-->330 \mathrm{mSec}\) & 33 \\
\hline 4 & 250 mSec & 25 \\
\hline 5 & 200 mSec & 20 \\
\hline 10 & 100 mSec & 10 \\
\hline 11 & \(91 \mathrm{mSec}-->90 \mathrm{mSec}\) & 9 \\
\hline 12 & \(83 \mathrm{mSec}-->80 \mathrm{mSec}\) & 8 \\
\hline 14 & \(71 \mathrm{mSec}-->70 \mathrm{mSec}\) & 7 \\
\hline 15 & \(67 \mathrm{mSec}-->60 \mathrm{mSec}\) & 6 \\
\hline 20 & 50 mSec & 5 \\
\hline 25 & 40 mSec & 4 \\
\hline 30 & 33 mSec --> 30 mSec & 3 \\
\hline 50 & 20 mSec & 2 \\
\hline 100 & 10 mSec & 1 \\
\hline
\end{tabular}

Table 5-1 Remote Scroll Rates

\section*{DIGITAL I/O P1/1}

DI 1 Shot (CP-402)
Use the Digital Input 1 Shot (CP-402) to create a one scan pulse (one-shot) as the result of a high-to-low (open-toclosed) transition on any or all of the PLC dedicated inputs. To generate a 1 -scan pulse for an inactive high to an active low transition, enter a " 1 " in the bit location of corresponding digital input. In the example below, the " 1 " has been entered in digital input 14.

DI 7..0 (MP-100)
Digital Input \(7 . .0\) (MP-100) displays the value of the "J6" digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). Refer to Appendices: Appendix C for the DI \(7 . .0\) (MP-100) bit map list.

DI \(15 . .8\) (MP-101)
Digital Input \(15 . .8\) (MP-101) displays the value of the " J 7 " digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). These eight inputs can be set up in the PLC Programming screen to generate a One-Shot Pulse on a high-to-low transition. Refer to Appendices: Appendix C for the DI \(15 . .8\) (MP-101) bit map list.

DO 7..0 (MP-102)
Digital Output 7..0 (MP-102) displays the value of the " J 2 " digital outputs. A ' 1 ' in the bit location indicates an active "low voltage" condition on the corresponding open collector output (which would sink DC current). Refer to Appendices: Appendix C for the DO \(7 . .0\) (MP-102) bit map list.

\section*{PLC PROGRAMMING}

Editor and the Compiler:
The PLC program consists of a text-based list of commands (instructions) and operands that work on bit data to produce the same result as a ladder-logic language. Each rung of a ladder logic program is implemented as a group of commands/operands starting with the "LOAD" (or LD NOT) command and ending with the "OUT "command. A special series of screens that function as an editor allow you to change the PLC program. You can add commands, delete commands or change a command or operand. This is done with the keypad and screens; programming computer is not required.

Go to PLC / PLC Programming. This will bring up the current PLC program. There are five pages with a total of 64 lines. Each line consists of one command and one operand. The simplest rung would require two lines: one for the opening "LOAD" and one for the closing "OUT". Scroll through the lines with the Par Up or Par Down keys. The second line of the PLC Programming title block will display what line is active (highlight) and if the command or operand on that line is active. Use the Page Up and Page Down keys scroll quickly through the entire program. Any changes made to the PLC program will be compiled immediately. The changes go into effect as soon as the PLC Program has been exited and saved.

Changing Commands:
Scroll the Par Up or Par Down keys to the command that you want to change (highlight). Use the Page Up and Page Down keys scroll quickly through the entire program. The second line of the PLC Programming title block will display what line is active (highlight) and the command on the line that is active. When an command is active (highlight), it can be changed by using the "increment scroll up/down" keys to scroll through the list of available commands. Stop scrolling when the correct command appears. Use the Clear key to delete a the active line. The operand may need to be changed to be consistent with the new command. Use the Par Down key to scroll to the operand (highlight).

Changing Operands:
Scroll the Par Up or Par Down keys to the to the operand that you want to change. Use the Page Up and Page Down keys scroll quickly through the entire program. The second line of the PLC Programming title block will display what line is active (highlight) and the operand on the line that is active. When a operands is active, it can be changed either by entering the PLC Bit number or by scrolling through the list of operands with the "increment scroll \(\boldsymbol{\Delta}\) or \(\boldsymbol{\nabla}\) " keys. The name of the operand appears on the line to the right of the PLC Bit number. Stop scrolling when the correct operand appears. Press the Enter key to enter operand. Use the Clear key to delete a the active line.

Inserting a New Line:
To insert a new line at the active line (highlight), scroll to the command and press the Enter key. The new line is now active and the prior active line, as well as the rest of the lines, move down one line. The new line appears as a "NOP" (no operation) command and a "No Opnd" (No operand).

To Insert a new line below the active line (highlight), scroll to the operand and press the Enter key. A new line is inserted on the next line and becomes the active line. The entire program, moves down one line. The new line appears as a "NOP" (no operation) command and a "No Opnd" (No operand).

Delete a Line:
To delete a line, scroll to either the command or operand of the line and press the Clear key. A dialog box appears and asks if you want to delete the line. Press the Enter key to delete the line or the Clear key to cancel the request to delete.

Status and Help screens:
Press the Help key to go to the help screen for a description of the PLC Programming. Press the Status key to access the status screen. Press the Status key again to return to the PLC Programming screen. The Code is still functional in the status screen. However, if you access the status screen from the PLC programming screen, then you can not access the menu screens from the status screen. You must exit the PLC Programming screen in order to access the menu screens.

Closing and Saving the PLC Programming screen:
To return to the menu screen, press the Menu key. If you made any changes, a dialog box will appear to confirm the changes. To keep the changes, press the Enter key. Pressing the Enter key to accept the changes does not alter the PLC backup or the PLC default program. To discard the current changes, press the Clear key.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{c|}{ DANGER } \\
\begin{tabular}{l} 
When you exit the PLC Programming screen \\
and press the Enter key, the changes will take effect \\
immediately. \\
The new program could cause a digital output to \\
change state, and cause an actuator to engage or \\
disengage.
\end{tabular} & \\
\hline
\end{tabular}

Creating a Customized Backup Program:
To save the changes that you have made to the PLC Program as a customized backup PLC program, go to the Setup/Load \& Save Parms screen (page 1) and enter " 1 " in Save PLC Prgm (CP-499).

Loading the Backup Program or the Default Program:
The last page (page 5) of the PLC programming help screens (accessed from any line) allows you to choose between loading the backup PLC program (that you have customized) or loading the default PLC program that was shipped from the factory. "Load Default Program" is the default. You can also access the PLC backup or the PLC default programs from the Setup/Load \& Save Parms screen (page 1). For the list of the factory default PLC Program Logic, see Appendices: Appendix J.

NOTE: The backup PLC Program is identical to the default PLC Program until you customize the PLC and then save the backup in the Setup/Load \& Save Parms screen. In addition, if you perform a "Clear 9" power-up, your customized backup PLC Program will revert back to the default PLC Program.


Use the Page keys to go scroll through the 64 command lines, a page at a time. The screens below display the default sttings for lines 12 through 64.


\section*{PLC Programming / Help Screen Option and Save Screen}

The last page of the Help screens (page 5) allows you to choose between creating a backup of the changes that you have entered or loading the default bit program that was shipped from the factory. "Load Default Program" is the default choice.


Press the Menu key from any of the PLC Proramming screens to exit. If you have made changes in any of the screens, a dialog box will popup and give you the opportunity to save or to discard your changes.

-NOTES-

\section*{System Monitoring/Monitor Parameters}

\section*{Introduction to Monitor Parameters}

\section*{System Monitor}

Run Monitor
STD Signals Monitor
Limits and Alarms
DIG I/O Monitor
Analog In Monitor
Control Overrides

\section*{INTRODUCTION TO MONITOR PARAMETERS}

Parameters are divided into two classifications; Control Parameters (CP) and Monitor Parameters (MP). This section is about Monitor Parameters. Control Parameters are explained in System Setup/Control Parameters.

The parameters appear on the screens by a Parameter Name. The Help screens list the parameters by both their name and by a numbered code, which is called the Parameter Code. The operational data is the Parameter Value.
\begin{tabular}{|l|lll|}
\hline \multirow{3}{*}{ Parameters \(=\)\begin{tabular}{llll|} 
& Marameter Name & Parameter Code & Parameter Value \\
\cline { 3 - 4 } & Control Parameter & Line Speed & MP-40
\end{tabular}} & 0.0 (default) \\
& Line Spd SP & CP-210 & 0.0 (default) \\
\hline
\end{tabular}

Note: Monitor Parameters are status indicators only - you can not directly affect or change a Monitor Parameter. When Monitor Parameters are displayed on the screens, they do not have a small indicator "dot" to the left of the Parameter Name (unlike Control Parameters, which do have a small indicator "dot" to the left of the Parameter Name).

Monitor Parameter (MP) screens allow you to monitor the performance of the CX-1102 and your system. These screens also help you troubleshoot for problems as well as confirm the wiring and tuning. Monitor Parameter screens can be accessed at any time during the CX-1102's operation, including during Run, Jog and F-Stop. The Monitor Parameter screens are accessed through the System Monitor screen.
-NOTES-

\section*{SYSTEM MONITOR}

Use the system monitor screens to access the Monitor Parameter screens that monitor the operation of the CX-1102. In addition to their monitoring capability, the Control Override screens provide limited control of the Run/Stop/Jog logic and the block selection.

The CX-1102 system monitor screens are:
- Run Monitor
- STD Signals Monitor
- Limits and Alarms Monitor
- DIG I/O Monitor
- Analog In Monitor
- Control Overrides

\section*{RUN MONITOR / SYSTEM P1/3}

The Run Monitor screen (page 1) contains monitor system data parameters. Setpoint X (CP-201) is also included on this screen to allow convenient assess to your active setpoint.

System State (MP-50)
System State (MP-50) displays the present operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run" or the "Jog" operating state, the F-Stop, Unload and HStop inputs must be closed.
\begin{tabular}{lll}
\(8=\) Diagnostics & \(7=\) Setup & \(6=\) Not Defined \\
\(5=\) Jog & \(4=\) RUN & \(3=\) Load \\
\(2=\) H-Stop & \(1=\) Unload & \(0=\) F-Stop
\end{tabular}

Setpoint X (CP-201)
Setpoint X (CP-201) displays the active commanded Line Speed Setpoint. Setpoint X is a quick access, dynamically assigned parameter that is a mirror of the currently commanded Line Speed regardless of the source. It may display Line Speed SP (CP-210), or Ext LineSpd (MP-88) depending upon application choices. The label will change dynamically to indicate which parameter is being mirrored. If Line Speed \(\mathrm{SP}(\mathrm{CP}-210)\) is active, then any change to Setpoint X, (temporarily labeled LineSpeed X) will also change CP-210.

\section*{LineSpdSRef (MP-41)}

Line Speed Scaled Reference (MP-41) displays the currently commanded target web speed. It may come from several possible sources, via LineSpdSrc (CP-203). If the non-dancer-trimmed axis is under control of this device, and a high Line Speed is commanded, this value will be automatically reduced to the limit calculated by EstMaxLineSpd (MP-43), due to speed limitations arising from a small diameter on one axis.

\section*{LineSpdRRef (MP-42)}

Line Speed Ramped Reference (MP-42) displays the web speed command, in feedback Engineering Units. This is the output of the ramp calculations. When the ramp has been completed, the LineSpdRRef (MP-42) should equal the LineSpdSRef (MP-41).

Line Speed (MP-40)
Line Speed (MP-40) is an actual measured speed. It is derived from the roll RPM of the non-dancer-trimmed axis, and converted into web speed via the currently calculated diameter estimate. When the system is operating under good control, it should agree with the commanded LineSpdSRef (MP-41).

\section*{EstMaxLineSpd (MP-43)}

Estimated Maximum Line Speed (MP-43) is calculated from an analysis of the potential maximum speeds achievable from each axis. Typically the axis with the smallest diameter will limit the maximum Line Speed possible. If the non-dancer-trimmed axis is under control of this device, and a high Line Speed is commanded, the LineSpdSRef (MP-41) will be automatically adjusted (limited), as new values of EstMaxLnSpd (MP-43) are calculated.

\section*{DncrCtnt Err (MP-83)}

Dancer Content Error (MP-83) displays the difference between requested Dancer SP (CP-250) and actual Dancer Ctnt (MP-82). This error will be used to trim the speed of the dancer trimmed axis and attempt to restore the dancer content (position) toward the Dancer SP (CP-250).

Dancer Trim (MP-84)
Dancer Trim (MP-84) displays the amount of corrective line speed adjustment applied to the "dancer trimmed" roll. Proportional to the dancer error.

\section*{Wrap Pty (MP-70)}

Wrap Polarity (MP-70) displays the present system configuration in regard to various combinations of overwrap/underwrap.
\(11=\) Wind underwrap, Unwind underwrap
\(10=\) Wind underwrap, Unwind overwrap
\(01=\) Wind overwrap, Unwind underwrap
\(00=\) Wind overwrap, Unwind overwrap

\section*{RUN MONITOR / UNWIND P2/3}

The Run Monitor / Unwind screen (page 2) monitor the parameters that are related to the Unwind control loop.

\section*{Uwnd State (MP-48)}

Unwind State (MP-48) displays the present operating state of the Unwind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

UwndCntrlLp (MP-72)
Unwind Control Loop (MP-72) displays the present operating mode of the unwind axis. These modes are automatically selected depending on the present system State (MP-50).
\[
\begin{aligned}
& 2=\text { PsnHld (Position Hold) } \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
\]

\section*{Uwnd Dirn (MP-60)}

Unwind Direction (MP-60) displays the present condition of the Uwnd LED mounted on the Analog board. The LED conditions indicate unwind roll motion, forward or reverse.
\[
\begin{array}{ll}
2=\text { Unwind forward motion } & =\text { LED Green } \\
1=\text { Unwind reverse motion } & =\text { LED Red } \\
0=\text { Unwind no motion, }<1 \mathrm{~Hz} & =\text { LED Off }
\end{array}
\]

\section*{UwndRollRPM (MP-03)}

Unwind Roll RPM (MP-03) displays the rotational speed of the unwind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

\section*{UwndRRef (MP-21)}

Unwind Ramped Reference (MP-21) displays the speed command, in Roll RPM. This is the output of the ramp calculations. When the ramp has been completed, the UwndRRef (MP-21) should equal the LineSpdSRef (MP41). UwndRRef (MP-21) is the instantaneous commanded speed, in roll RPM, for the unwind axis. It is derived from Line Speed (after accel/decel ramps), Diameter, and possibly Dancer movement.

\section*{UwndRR Err (MP-22)}

Unwind Ramped Reference Error (MP-22) displays the instantaneous difference between the commanded UwndRRef (MP-21) and the actual UwndRollRPM (MP-03).
Uwnd Trim (MP-26)
Unwind Trim (MP-26) displays the value of the output of the PID compensator. Uwnd Trim is displayed in Volts. Uwnd Trim is the combined conditioned error signals that, combined with the Uwnd FFwd (MP-24), will become the UwndCO Volts (MP-27). It is the combination of all three parts of the PID error correction algorithm.

\section*{UwndCO Volts (MP-27)}

Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).
UwndEstDia (MP-07)
Unwind Estimated Diameter (MP-07) is calculated from roll rotation and dancer movement. It can also be forced to the value in UwndDiaPrst (CP-364) via PLC action. It is used to translate web speed commands into roll RPM.

\section*{UwndEstCtnt (MP-06)}

Unwind Estimated Content (MP-06) is calculated from approximate web travel, and decrements during forward motion. It can be forced to the UwndCtntPrst (CP-366) by PLC action. While decrementing, it will ultimately rollover over at zero. At rollover, it sets a PLC bit, and resets itself to the value in UwndCtntRO (CP-368). If the web reverses direction, with the Unwind axis taking up web material, then the value will increment, and ultimately rollover upon reaching the UwndCtntRO (CP-368) limit. It is often used, via a comparator in the PLC, to declare a near-empty roll.

\section*{RUN MONITOR / WIND P3/3}

The Run Monitor / Wind screen (page 3) monitor that are related to the Wind control loop.

Wind State (MP-49)
Wind State (MP-49) displays the present operating state of the wind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

WindCntrlLp (MP-73)
Wind Control Loop (MP-73) displays the present operating mode of the wind axis. These modes are automatically selected depending on the present system State (MP-50).
\[
\begin{aligned}
& 2=\text { PsnHld (Position Hold) } \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
\]

Wind Dirn (MP-61)
Wind Direction (MP-61) displays the present condition of the Wind LED mounted on the Analog board. The LED conditions indicate wind roll motion, forward or reverse.
\[
\begin{array}{ll}
2=\text { Wind forward motion } & =\text { LED Green } \\
1=\text { Wind reverse motion } & =\text { LED Red } \\
0=\text { Wind no motion },<1 \mathrm{~Hz} & =\text { LED Off }
\end{array}
\]

WindRollRPM (MP-13)
Wind Roll RPM (MP-13) displays the rotational speed of the wind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.
WindRRef (MP-31)
Wind Ramped Reference (MP-31) displays the speed command, in feedback Roll RPM. This is the output of the ramp calculations. When the ramp has been completed, the WindRRef (MP-31) should equal the LineSpdSRef (MP-41). WindRRef (MP-31) is the instantaneous commanded speed, in roll RPM, for the wind axis. It is derived from Line Speed (after accel/decel ramps), Diameter, and possibly Dancer movement.
WindRR Err (MP-32)
Wind Ramped Reference Error (MP-32) displays the instantaneous difference between the commanded WindRRef (MP-31) and the actual WindRollRPM (MP-13).
Wind Trim (MP-36)
Wind Trim (MP-36) displays the value of the output of the PID compensator. Wind Trim is displayed in Volts. Wind Trim is the combined conditioned error signals that, combined with the WindFFwd (MP-34), will become the WindCO Volts (MP-37). It is the combination of all three parts of the PID error correction algorithm.

\section*{WindCO Volts (MP-37)}

Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).
WindEstDia (MP-17)
Wind Estimated Diameter (MP-17) is calculated from roll rotation and dancer movement. It can also be forced to the value in WindDiaPrst (CP-365) via PLC action. It is used to translate web speed commands into roll RPM.
WindEstCtnt (MP-16)
Wind Estimated Content (MP-16) is calculated from approximate web travel, and increments during forward motion. It can be forced to the WindCtntPrst (CP-367) by PLC action. While incrementing, it will ultimately rollover over at the WindCtntRO (CP-369) limit. At rollover, it sets a PLC bit, and resets itself to the value in WindCtntRO (CP-369). If the web reverses direction, with the Wind axis taking up web material, then the value will decrement, and ultimately rollover upon reaching zero. It is often used, via a comparator in the PLC, to declare a near-empty roll.

\section*{STD SIGNAL MONITOR / UNWIND P1/3}

The STD Signal Monitor / Unwind screen (page 1) displays parameters that are related to the Unwind Frequency Input signal.

Uwnd State (MP-48)
Unwind State (MP-48) displays the present operating state of the Unwind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

Uwnd Hz (MP-01)
Unwind Hertz (MP-01) displays the current frequency of the Unwind Encoder Input, in Hertz.

UwndEncRPM (MP-02)
Unwind Encoder RPM (MP-02) displays the current speed of the Unwind encoder in RPM relative to PPR Uwnd (CP-261).

UwndRollRPM (MP-03)
Unwind Roll RPM (MP-03) displays the rotational speed of the Unwind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

UwndCnts (MP-05)
Unwind Counts (MP-05) displays the encoder pulses from the Unwind station. They are converted to engineering units and displayed in UwndEstCtnt (MP-06). They will rollover, and begin again, as determined by UwndCtntRO (CP-368).

Uwnd Rot (MP-09)
Unwind Rotations (MP-09) displays a totalized rotational count of the Unwind Roll.

\section*{STD SIGNAL MONITOR / WIND P2/3}

The STD Signal Monitor / Wind screen (page 2) displays the parameters that are related to the Wind Frequency Input signal.

Wind State (MP-49)
Wind State (MP-49) displays the present operating state of the wind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

Wind Hz (MP-11)
Wind Hz (MP-11) displays the present frequency of the Wind Encoder Input, in Hertz.
WindEncRPM (MP-12)
Wind Encoder RPM (MP-12) displays the current speed of the Wind encoder in RPM relative to PPR Wind (CP-266).

WindRollRPM (MP-13)
Wind Roll RPM (MP-13) displays the rotational speed of the Wind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

WindCnts (MP-15)
Wind Counts (MP-15) displays the encoder pulses from the Unwind station. They are converted to engineering units and displayed in WindEstCtnt (MP-16). They will rollover, and begin again, as determined by WindCtntRO (CP-369).

Wind Rot (MP-19)
Wind Rotations (MP-09) displays a totalized rotational count of the Wind Roll.

\section*{STD SIGNAL MONITOR / CONTROL OUTPUTS P3/3}

The STD Signal Monitor / Control Outputs screen (page 3) displays SigU and SigW signal data. The SigU and SigW is the CX-1102 output signal that is the input to the drive as a velocity (or torque) command.

UwndCO Volts (MP-27)
Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

UwndCO Bits (MP-28)
Unwind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigU) signal to the unwind drive. UwndCO Bits is the UwndCO Volts (MP-27) expressed in DAC bits.

UwndCOMaxBits (MP-29)
Unwind Control Output Maximum Bits (MP-29) reflects the maximum allowed output in units of DAC bits. The value of UwndCOMaxVolts (CP-281) determines this parameter, based on the conversion of 32767 bits \(=15\) VDC.

WindCO Volts (MP-37)
Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

WindCO Bits (MP-38)
Wind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigW) signal to the wind drive. WindCO Bits is the WindCO Volts (MP-37) expressed in DAC bits.

WindCOMaxBits (MP-39)
Wind Control Output Maximum Bits (MP-39) reflects the maximum allowed output in units of DAC bits. The value of WindCOMaxVolts (CP-286) determines this parameter, based on the conversion of 32767 bits \(=15\) VDC.

\section*{ALARMS \& LIMITS / ACTIVE ALARMS P1/2}

The Alarms \& Limits / Active Alarms screen (page 1) displays the status of the alarms and limits. This screen displays a list of the Limits, General Alarms and Custom Alms. The active Limits, Alarms and Custom Alms are highlighted (See next page).


\section*{ALARMS AND LIMITS P2/2}

The Alarms \& Limitsscreen (page 2) displays the bit-mapped Monitor Parameters that monitor the status of the Limits, Alarms and Custom Alms. Use either the Appendices: Appendix C or the "Help" screen to preview the bit map lists.

\section*{Active Block (MP-51)}

Active Block (MP-51) displays the active block (0-7). The block can be selected and made active by the Block select bits (Blk Sel A,B,C), in the PLC Programming screen if Block Select Source (CP-478) is set to "1" (DigIn \& PLC). Or the block can be selected and made active by the keypad if Block Select Source (CP-478) is set to " 2 " (Keypad Blk Sel).

\section*{InvalidBlks (MP-52)}

Invalid Blocks (MP-52) displays the status of the blocks in the Block Setup screens. A " 1 " indicates that there is an error with the corresponding block. Generally, this indicates that an overflow condition can occur if the corresponding block is activated. In addition, since other parameters are used in conjunction with the Block Parameters that you selected, an error can result from a parameter that is not selected in Block Parameters. If a bad block is activated, the CX-1102 will execute an F-Stop until either the block error is corrected or a another block is activated. Refer to Appendices: Appendix \(C\) for the Invalid Blocks (MP-52) bit map list.

\section*{Misc Status (MP-53)}

Miscellaneous Status (MP-53) displays various status conditions . A " 1 " in the CO Sign bit indicates a negative command output. A " 1 " in any other bit location indicates an active condition. Refer to Appendices: Appendix C for the Miscellaneous Status (MP-53) bit map list.

\section*{Std Alarms (MP-54)}

Std Alarms (MP-54) displays various alarm conditions . A " 1 " in any bit location indicates an active condition. Refer to Appendices: Appendix \(C\) for the Std Alarms (MP-54) bit map list.

\section*{Custom Alms (MP-55)}

Custom Alarms (MP-55) displays the outputs of the PLC numerical comparators. A " 1 " in bit locations 0-3 indicates that the result of the compare (Cmprx Parm value vs. Cmprx Val) is true for the given Cmprx Type. A " 1 " in bit locations 4-7 indicates that the result of the compare (Cmprx Parm value vs. Cmprx Val) is false for the given Cmprx Type (the NOT is true). Refer to CP-380 through CP-395. Refer to Appendices: Appendix C for the Custom Alarms (MP-55) bit map list.

Misc Alarms (MP-56)
Misc Alarms (MP-56) displays various alarm conditions . A " 1 " in any bit location indicates an active condition. Refer to Appendices: Appendix \(C\) for the Misc Alarms (MP-56) bit map list.

\section*{DIG I/O MONITOR P1/1}

The DIG I/O Monitor screen displays the status (state) of all the digital inputs and outputs.
DI 7..0 (MP-100)
Digital Input \(7 . .0\) (MP-100) displays the value of the "J6" digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). Refer to Appendices: Appendix C for the DI \(7 . .0\) (MP-100) bit map list. The Help screen for DI \(7 . .0\) (MP-100) also contains a bit map list.

\section*{DI 15..8 (MP-101)}

Digital Input \(15 . .8\) (MP-101) displays the value of the " J 7 " digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). These eight inputs can be set up in the PLC Programming screen to generate a One-Shot-Pulse on a high-to-low transition. Refer to Appendices: Appendix \(C\) for the DI \(15 . .8\) (MP-101) bit map list. The Help screen for DI \(15 . .8\) (MP-101) also contains a bit map list.

DO 7..0 (MP-102)
Digital Output \(7 . .0\) (MP-102) displays the value of the " J 2 " digital outputs. A ' 1 ' in the bit location indicates an active "low voltage" condition on the corresponding open collector output (which would sink DC current). Refer to Appendices: Appendix \(C\) for the DO \(7 . .0\) (MP-102) bit map list. The Help screen for DO \(7 . .0\) (MP-102) also contains a bit map list.

\section*{ANALOG IN MONITOR P1/1}

The Analog In Monitor screen (page 1) monitors the input signals and displays the parameters for the analog inputs (Dancer and Ext Line Speed).

Dancer State (MP-58)
Dancer State (MP-58) displays the present condition of the Dancer LED mounted on the Analog board. The LED conditions indicate various specific Dancer arm states.
\[
\begin{array}{ll}
3=\text { Between limits }- \text { OK } & =\text { LED Green } \\
2=\text { Full limit } & \text { LED Orange } \\
1=\text { Empty limit } & =\text { LED Red } \\
0=\text { Not calibrated } & =\text { LED Off }
\end{array}
\]

\section*{Dancer Bits (MP-80)}

Dancer Bits (MP-80) displays the ADC receiving the analog Dancer signal.

\section*{Dancer Volts (MP-81)}

Dancer Volts (MP-81) displays the analog Dancer Signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

\section*{Dancer Ctnt (MP-82)}

Dancer Content (MP-82) displays the estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

\section*{DncrCtnt Err (MP-83)}

Dancer Content Error (MP-83) displays the difference between requested Dancer SP (CP-250) and actual Dancer Ctnt (MP-82). This error will be used to trim the speed of the dancer trimmed axis and attempt to restore the dancer content (position) toward the Dancer SP (CP-250).

\section*{Ext LS Bits (MP-86)}

External Line Speed Bits (MP-86) displays the ADC receiving the analog Line Speed signal.

\section*{Ext LS Volts (MP-87)}

External Line Speed Volts (MP-87) displays the analog Line Speed signal. It operates over the range of 0 to \(+/-\) 10vdc. Reverse direction can be achieved via negative signal in some configurations, or via a positive signal plus a wire terminal reversing input switch.

\section*{Ext LineSpd (MP-88)}

External Line Speed (MP-88) displays the Ext LS Volts (MP-87) signal converted into web line speed units. This display actively monitors the input signal even if the system is presently using another source for the Line Speed, or even if the value is later limited for various reasons.

\section*{CONTROL OVERRIDES / STATE P1/4}

The Control Overrides / States screen (page 1) allows you to select and monitor the operating state for the CX-1102. The first line on the screen displays the current operating state.

System State (MP-50)
System State (MP-50) displays the present operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run" or the "Jog" operating state, the F-Stop, Unload and HStop inputs must be closed.
\begin{tabular}{lll}
\(8=\) Diagnostics & \(7=\) Setup & \(6=\) Not Defined \\
\(5=\) Jog & \(4=\) RUN & \(3=\) Load \\
\(2=\) H-Stop & \(1=\) Unload & \(0=\) F-Stop
\end{tabular}

Scroll to either F-Stop, Load or Run and then press the Enter key and make that line active. The corresponding inputs must be wired properly for the CX-1102 to function in the operating state that you activate. To change to a different operating state, scroll to that state, press Enter and the CX-1102 will change to the new state. The F-Stop and H -Stop inputs should be closed (shorted to common) for the CX1102 to enter "Run". If the "Run" digital input is active, then a request for "F-Stop" will be ignored.

> F-STOP
> LOAD
> RUN

Uwnd State (MP-48)
Unwind State (MP-48) displays the present operating state of the Unwind control loop (see list below).
\[
\begin{array}{lll}
7=\text { Diagnostics } & 6=\text { Jog Stop } & 5=\text { Jog Reverse } \\
4=\text { Jog Forward } & 3=\text { Not Defined } & 2=\text { RUN } \\
1=\text { H-Stop } & 0=\text { F-Stop } &
\end{array}
\]

UwndCntrlLp (MP-72)
Unwind Control Loop (MP-72) displays the present operating mode of the Unwind axis. These modes are automatically selected depending on the present system State (MP-50).
\[
\begin{aligned}
& 2=\text { PsnHld (Position Hold) } \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
\]

Wind State (MP-49)
Wind State (MP-49) displays the present operating state of the wind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

WindCntrlLp (MP-73)
Wind Control Loop (MP-73) displays the present operating mode of the Wind axis. These modes are automatically selected depending on the present system State (MP-50).
\[
\begin{aligned}
& 2=\text { PsnHld (Position Hold }) \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
\]

\section*{CONTROL OVERRIDES P2/4}

Use the Control Overrides / Diameter \& Content screen (page 2) to set the diameter or the content. Scroll to the item that you want to set and press the Enter key to activate that item.

\author{
Set Unwind Diameter \\ Set Wind Diameter \\ Set Unwind Content \\ Set Wind Content \\ Set Unwind Dia Ctnt \\ Set Wind Dia Ctnt \\ Set Both Dia Ctnt
}

\section*{CONTROL OVERRIDES P3/4}

Use the Control Overrides screen (page 3) to effect the following control functions:
Negate Line Speed (change direction),
Stop Ramp
Open Loop Wind
Stop Integral Wind
Open Loop Unwind
Stop Integral Unwind

Scroll the cursor to the item that you want to activate and press Enter. The highlighter will appear and will remain on the function(s) that are active. If you want to deactivate a function, scroll the cursor to the function that you want to deactivate and press Enter. The highlighter will disappear and that function is no longer active.

The Cntrl Latch bits are OR'ed with the corresponding PLC Bits. Use either the PLC or the keypad to activate these functions.

\section*{CONTROL OVERRIDES P4/4}

You can also use this screen to select the source from which active block will be selected, as well as to monitor the active block. Use Blk Sel Source (CP-478) to determine the source (Digital Inputs \& PLC, Keypad Blk Sel, or Cntr 4 Cnt) from which the active block is will be selected. Enter "Keypad Blk Sel" (2) in Blk Sel Source (CP-478) to control the selection of the blocks from Keypad Blk Sel (CP-479), using the keyboard. Enter "DI \& PLC" (1) in Blk Sel Source (CP-478) to control the selection of the blocks from the inputs.

\section*{System State (MP-50)}

System State (MP-50) displays the present operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run" or the "Jog" operating state, the F-Stop, Unload and H-Stop inputs must be closed.
\[
\begin{array}{lll}
8=\text { Diagnostics } & 7=\text { Setup } & 6=\text { Not Defined } \\
5=\text { Jog } & 4=\text { RUN } & 3=\text { Load } \\
2=\text { H-Stop } & 1=\text { Unload } & 0=\text { F-Stop }
\end{array}
\]

Blk Sel Source (CP-478)
Block Select Source (CP-478) determines whether the active block will be selected by the Digital Inputs \& PLC, Keypad Blk Sel (CP-479) or Counter 4.
\[
\begin{aligned}
& 3=\text { Cntr } 4 \text { Cnt } \\
& 2=\text { KyPd }=\text { Keypad Blk Sel } \\
& 1=\operatorname{DgIn}=\text { Digital Inputs \& PLC (default) }
\end{aligned}
\]

Keypad Blk Sel (CP-479)
The Keypad Block Select (CP-479) determines which block will be active when Blk Sel Source (CP-478) is set to "2" (KyPd).

\section*{Active Block (MP-51)}

Active Block (MP-51) displays the active block. The block can be selected and made active by the Block Select bits (Blk Sel A,B.C), in the PLC Programming screen if Block Select Source (CP-478) is set to " 1 " (DigIn \& PLC). Or the block can be selected and made active by the keypad if Block Select Source (CP-478) is set to "2" (Keypad Blk Sel).

\section*{Setpoint X (CP-201)}

Setpoint X (CP-201) displays the active commanded Line Speed Setpoint. Setpoint X is a quick access, dynamically assigned parameter that is a mirror of the currently commanded Line Speed regardless of the source. It may display Line Speed SP (CP-210), or Ext LineSpd (MP-88) depending upon application choices. The label will change dynamically to indicate which parameter is being mirrored. If Line Speed SP (CP-210) is active, then any change to Setpoint X, (temporarily labeled LineSpeed X) will also change CP-210.

Uwnd State (MP-48)
Unwind State (MP-48) displays the present operating state of the Unwind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

UwndCntrlLp (MP-72)
Unwind Control Loop (MP-72) displays the present operating mode of the Unwind axis. These modes are automatically selected depending on the present system State (MP-50).
\(2=\) PsnHld (Position Hold)
\(1=\) Vel (Velocity Loop)
\(0=\) OL (Open Loop)

Wind State (MP-49)
Wind State (MP-49) displays the present operating state of the wind control loop (see list below).
\begin{tabular}{lll}
\(7=\) Diagnostics & \(6=\) Jog Stop & \(5=\) Jog Reverse \\
\(4=\) Jog Forward & \(3=\) Not Defined & \(2=\) RUN \\
\(1=\) H-Stop & \(0=\) F-Stop &
\end{tabular}

WindCntrlLp (MP-73)
Wind Control Loop (MP-73) displays the present operating mode of the Wind axis. These modes are automatically selected depending on the present system State (MP-50).

\author{
\(2=\) PsnHld (Position Hold) \\ \(1=\operatorname{Vel}(\) Velocity Loop) \\ \(0=\) OL (Open Loop)
}
-NOTES-

\section*{Serial Communications}

Introduction to Serial Communications
CX-1102 Serial Communications ASCII Data-Link Protocol
CX-1102 Serial Communications ASCII2 Data-Link Protocol
CX-1102 Serial Communications Binary Data-Link Protocol

\title{
INTRODUCTION TO SERIAL COMMUNICATIONS
}

The CX-1102 can interface with a host computer through a RS-485 Serial Communications Interface (refer to Figure 2-30, CX-1102 Multidrop Installation, page 2-24). This interface allows the host computer to perform remote control of the CX-1102, Control Parameter entry, and status or performance monitoring.

This following sections describe the three available interfaces for Serial Communications:

\author{
CX-1102 Serial Communications ASCII Data-Link Protocol \\ (Message Transmission / Response Structures) \\ CX-1102 Serial Communications ASCII2 Data-Link Protocol (Message Transmission / Response Structures) \\ CX-1102 Serial Communications Binary Data-Link Protocol \\ (Message Transmission / Response Structures)
}

NOTE: Before you can apply Serial Communications, the CX-1102 must be interfaced with a host computer through a RS-485 Serial Communications Interface.

The CX-1102 comes factory pre-loaded with default Control Parameters for Serial Communications. These Control Parameters set up the CX-1102 to accommodate the RS-485 Serial Communications Interface. Generally, the default settings are suitable for most applications and do not require modification, however, these default parameters can be modified for your specific application.

All of the other Control Parameters can be modified as well, when communications have been established through the host computer using the Serial Communications Interface. To configure for Serial Communications, refer to System Setup - Control Parameters: Device Configure, Serial Communications section.

\title{
CX-1102 Serial Communications ASCII Data-Link Protocol
}
(Message Transmission / Response Structures)
\begin{tabular}{ll} 
STX & 1 Byte \({ }^{\wedge}\) B Char(2) \\
Address & 2 ASCII Chars \\
Function & 2 ASCII Chars \\
Message Error & 2 ASCII Chars \\
Data Field & Number of characters defined by Function \\
ETX & 1 Byte \({ }^{\wedge} \mathrm{C}\) Char(3) \\
CRC & 4 ASCII HEX Chars \((0000-\) FFFF \()\)
\end{tabular}

Number of constant characters per Transmission \(=10\) characters (Minimum \# of characters) CX-1102 Serial Communications Buffer Size \(=255\) characters (Maximum \# of characters) (leaves a maximum of 245 characters for the data field)

Note: In this document pertaining to ASCII protocols, any reference to ASCII HEX or " 0 -F" refers to ASCII representation of a HEX number using ASCII characters " \(0-9\) " \& "A-F".

Functions that are included in the ASCII Protocol:
01) Data Read Single Parameter
02) Data Write Single Parameter
03) Data Read Parm Block (14 parameter limit)
04) Data Write Parm Block (14 parameter limit)
05) Control Command Send
08) Data Read Custom Engineering Units
09) Data Write Custom Engineering Units
10) Data Read Constant Table (4 parameter limit)

Example:
Request Value for CP-210

Table 7-1 Data Read Single Parameter, Host Transmission
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STX & \multicolumn{2}{|c|}{ ADDR } & \multicolumn{2}{|c|}{ FUNC } & \multicolumn{3}{c|}{ DATA } & EXT & \multicolumn{3}{c|}{ CRC } \\
\hline\(\wedge^{\wedge} B\) & 0 & 1 & 0 & 1 & 2 & 1 & 0 & \({ }^{\wedge} C\) & \(F\) & 4 & 4 & 6 \\
\hline
\end{tabular}

\section*{Definition of Message Elements}
\begin{tabular}{|c|c|}
\hline "STX" & Signals the start of transmission. (Host/CX-1102) A single byte ASCII Char (02) "^B". \\
\hline "Address" & Address of the CX-1102 that will recognize and interpret the message. A two character ASCII number in the range of " \(01 "\) - " 99 ". ("@0" = Global Transmission) \\
\hline "Function" & The CX-1102 function requested which defines the data structure to follow. It is a two character ASCII number in the range of " 01 "-" 10 " (accepted functions are defined above). \\
\hline "Message Error" (Msg Error) & General transmission response from the CX-1102. This is a two character ASCII HEX number, in the range of " 00 " - "FF", which may indicate a serial communications error has occurred upon receipt of a message transmission. \\
\hline "Data Field" & A field of variable length which contains the data for the function requested. The Data Field is defined for individual functions through out the following section. \\
\hline "ETX" & Signals the end of the message. (Host/CX-1102) A single byte ASCII Char (03) "^C". \\
\hline "CRC" & (Cyclic Redundancy Check) If CRC Enable is "ON", a CRC value is calculated and sent with each transmission. The CRC includes all message data except the STX byte. The data stream is checked against the CRC at the receiving end. The CRC is a four character ASCII HEX number in the range of " 0000 " - "FFFF". \\
\hline "Format Character" (Fmt) & An ASCII character, in the range of " \(0-2\) "; where " 0 " indicates the value is "OK" as is, " 1 " indicates the value is negative and " 2 " indicates the value is in binary format. \\
\hline "Resolution Character" (Res) & An ASCII character, in the range of " \(0-9\) ", that indicates the number of digits to the right of the decimal point for the value. \\
\hline
\end{tabular}

Table 7-2 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{10}{|c|}{ Function } \\
\hline ASCII & ^AB & \(0-9\) & \(1-9\) & 0 & 1 & \(0-9\) & \(0-9\) & \(0-9\) & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field - Parameter Number - 3 characters.

Message Length \(=13\) characters.

Table 7-3 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-19\) & 20 & 21 & 22 & 23 & 24 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{c|}{ Msg Error } & Data Field & ETX & \multicolumn{2}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) ^B & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-3 (14 characters)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\hline DESC & Error Code & Res & Fmt & \multicolumn{7}{|c|}{ Parameter Value (0000000000-9999999999) } \\
\hline ASCII & \(0-3\) & \(0-9\) & \(0-9\) & \(0-2\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) & \(0-9\) \\
\hline
\end{tabular}

Parameter Error Code - 2 characters.
Resolution - 1 character (Number of digits to the right of the decimal point).
Format \(\quad-1\) character \((0=\mathrm{OK}\) as is, \(1=\) Negative value, \(2=\) Binary value \()\).
Parameter Value \(\quad-10\) character (Positive numeric value of the parameter).
Message Length \(=24\) characters.

FUNCTION (02) DATA WRITE SINGLE PARAMETER

Table 7-4 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-20\) & 21 & 22 & 23 & 24 & 25 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & \(\wedge\) & \(0-9\) & \(0-9\) & 0 & 2 & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-4 (15 characters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline DESC & \multicolumn{3}{|l|}{Parm Number} & Res & Fmt & \multicolumn{10}{|c|}{Parameter Value (0000000000-9999999999)} \\
\hline ASCII & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 \\
\hline
\end{tabular}

Parameter Number - 3 characters.
Resolution
- 1 character.

Format - 1 character.
Parameter Value - 10 characters.
Message Length \(=25\) characters.

Table 7-5 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Msg Error } & Error Code & \multicolumn{1}{c|}{ ETX } & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & B & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-3\) & \(0-9\) & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field - Parameter Error Code - 2 characters.
Message Length \(=12\) characters

\section*{FUNCTION (03) DATA READ PARAMETER BLOCK}

Table 7-6 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-8\) & 9 & 10 & 11 & 12 & 13 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & \(\wedge\) & \(0-9\) & \(1-9\) & 0 & 3 & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-6
Number of Parameters x 3 characters/parameter (14 parameters max. \(=42\) characters)
\begin{tabular}{|l|c|c|c|}
\hline Character \# & 6 & 7 & 8 \\
\hline DESC & Parameter Number 100's & Parameter Number 10's & Parameter Number 1's \\
\hline ASCII & \(0-9\) & \(0-9\) & \(0-9\) \\
\hline
\end{tabular}

Parameter Number - 3 characters.

Message Length \(=13\) to 52 characters.

Data Field Example:
Data Read Block of 3 Parameters (MP-40, CP-201, CP-440)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline DESC & \multicolumn{4}{|c|}{ Parameter 40 } & \multicolumn{4}{|c|}{ Parameter 101} & \multicolumn{3}{|c|}{ Parameter 440 } \\
\hline ASCII & 0 & 4 & 0 & 2 & 0 & 1 & 4 & 4 & 0 \\
\hline
\end{tabular}

Table 7-7 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-22\) & 23 & 24 & 25 & 26 & 27 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Msg Error } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & ^B & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-7
Number of Parameters x 17 characters/parameter (14 parameters max. \(=238\) characters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
\hline DESC & \multicolumn{3}{|l|}{Parm Number} & \multicolumn{2}{|l|}{Error Code} & Res & Fmt & \multicolumn{10}{|c|}{Parameter Value (0000000000-9999999999} \\
\hline ASCII & 0-9 & 0-9 & 0-9 & 0-3 & 0-9 & 0-9 & 0-2 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Parameter Number & -3 characters. \\
Parameter Error Code & -2 characters. \\
Resolution & -1 character. \\
Format & -1 character. \\
Parameter Value & -10 characters.
\end{tabular}

Message Length \(=27\) to 248 characters.

\section*{FUNCTION (04) DATA WRITE PARAMETER BLOCK}

Table 7-8 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-20\) & 21 & 22 & 23 & 24 & 25 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) ^B & \(0-9\) & \(0-9\) & 0 & 4 & <below> & \({ }^{\wedge} C\) & \(0-F\) & \(0-F\) & \(0-F\) & \(0-F\) \\
\hline
\end{tabular}

Data Field per Table 7-8
Number of Parameters x 15 characters/parameter (14 parameters max. \(=210\) characters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline DESC & \multicolumn{3}{|l|}{Parm Number} & Res & Fmt & \multicolumn{10}{|c|}{Parameter Value (0000000000-9999999999)} \\
\hline ASCII & 0-9 & 0-9 & 0-9 & 0-9 & 0-2 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 & 0-9 \\
\hline
\end{tabular}

Parameter Number - 3 characters.
Resolution - 1 characters.
Format - 1 characters.
Parameter Value - 10 characters.

Message Length \(=25\) to 220 characters.

Table 7-9 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-10\) & 11 & 12 & 13 & 14 & 15 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{c|}{ Msg Error } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) B & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & <below \(>\) & \(\wedge\) C & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-9
Number of Parameters x 5 characters/parameter (14 parameters max. \(=70\) characters)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 \\
\hline DESC & \multicolumn{3}{|c|}{ Parameter Number } \\
\hline ASCII & \(0-9\) & \(0-9\) & \(0-9\) & \(0-3\) & \(0-9\) \\
\hline
\end{tabular}

Parameter Number - 3 characters.
Parameter Error Code - 2 characters.
Message Length \(=15\) to 80 characters.

FUNCTION (05) CONTROL COMMAND SEND

Table 7-10 Host Transmission
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline DESC & STX & \multicolumn{2}{|l|}{Address} & \multicolumn{2}{|l|}{Function} & \multicolumn{2}{|l|}{Command} & ETX & \multicolumn{4}{|c|}{CRC (0000-FFFF)} \\
\hline ASCII & \(\wedge\) ^ & 0-9 & 0-9 & 0 & 5 & 0-2 & 0-9 & \({ }^{\wedge} \mathrm{C}\) & O-F & O-F & O-F & 0-F \\
\hline
\end{tabular}

Data Field - Control Command - 2 characters
Valid Control Commands:
\[
\begin{aligned}
& 01 \text { = F-Stop. } \\
& 02 \text { = R-Stop. } \\
& 03=\text { H-Stop. } \\
& 04 \text { = Run. } \\
& 05 \text { = Jog Forward. } \\
& 06 \text { = Jog Reverse. } \\
& 07 \text { = Jog Stop. } \\
& 09 \text { = Reset Integral. } \\
& 10 \text { = Preset FB Position. } \\
& 11 \text { = Preset LD Position. } \\
& 12 \text { = Reset Position Error. } \\
& 13 \text { = Preset FB \& LD Position. } \\
& 14 \text { = Preset FB, LD, \& Reset Position Error. } \\
& 17 \text { = Negate Scaled Reference. } \\
& 21 \text { = Bypass Ramp. } \\
& 22 \text { = Stop Ramp. } \\
& 23=\text { Open Loop. } \\
& 24=\text { Stop Integral. }
\end{aligned}
\]

Message Length \(=12\) characters .

Table 7-11 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Msg Error } & \multicolumn{2}{c|}{ Cmd Error } & ETX & \multicolumn{4}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & B & \(0-9\) & \(1-9\) & \(0-F\) & \(0-F\) & \(0-3\) & \(0-9\) & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field - Command Error Code - 2 characters.
Message Length \(=12\) characters .

FUNCTION (08) DATA READ CUSTOM ENGINEERING UNITS

Table 7-12 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) ^B & \(0-9\) & \(1-9\) & 0 & 8 & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field - 0 characters.
Message Length \(=10\) characters.

Table 7-13 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-20\) & 21 & 22 & 23 & 24 & 25 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{c|}{ Msg Error } & Data Field & ETX & \multicolumn{2}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) A & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-13
Engineering Units Text - (1 to 15 characters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline DESC & \multicolumn{15}{|c|}{Engineering Units Text} \\
\hline ASCII & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & \(!-\sim\) & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ \\
\hline
\end{tabular}

Message Length \(=11\) to 25 characters.
Note: The Engineering Units Text string may be any string of printable ASCII characters of up to 15 characters long.

FUNCTION (09) DATA WRITE CUSTOM ENGINEERING UNITS

Table 7-14 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-20\) & 21 & 22 & 23 & 24 & 25 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) & \(\wedge\) & \(0-9\) & \(0-9\) & 0 & 9 & <below> & \({ }^{\wedge} C\) & \(0-F\) & \(0-F\) & \(0-F\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-14
Engineering Units Text - (1 to 15 characters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline DESC & \multicolumn{15}{|c|}{Engineering Units Text} \\
\hline ASCII & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ & !- ~ \\
\hline
\end{tabular}

Message Length \(=11\) to 25 characters.
Note: The Engineering Units Text String may be any string of printable ASCII characters of up to 15 characters long.

Table 7-15 CX-1102 Response
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline DESC & STX & \multicolumn{2}{|l|}{Address} & \multicolumn{2}{|l|}{Msg Error} & \multicolumn{2}{|l|}{Error Code} & ETX & \multicolumn{4}{|c|}{CRC (0000-FFFF)} \\
\hline ASCII & ^B & 0-9 & 1-9 & 0-F & 0-F & 0-3 & 0-9 & \({ }^{\wedge} \mathrm{C}\) & 0-F & 0-F & 0-F & 0-F \\
\hline
\end{tabular}

Data Field - EU Text Error Code - 2 characters.
Message Length \(=12\) characters .

\section*{FUNCTION (10) DATA READ PARAMETER CONSTANT TABLE}

Table 7-16 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-8\) & 9 & 10 & 11 & 12 & 13 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Function } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) ^B & \(0-9\) & \(1-9\) & 1 & 0 & <below> & \({ }^{\wedge} C\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field per Table 7-16
Number of Parameters x 3 characters/parameter (4 parameters max. \(=12\) characters)
\begin{tabular}{|l|c|c|c|}
\hline Character \# & 6 & 7 & 8 \\
\hline DESC & Parameter Number 100's & Parameter Number 10's & Parameter Number 1's \\
\hline ASCII & \(0-9\) & \(0-9\) & \(0-9\) \\
\hline
\end{tabular}

Parameter Number - 3 characters.

Message Length \(=13\) to 22 characters.

Table 7-17 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-241\) & 242 & 243 & 244 & 245 & 246 \\
\hline DESC & STX & \multicolumn{2}{|c|}{ Address } & \multicolumn{2}{|c|}{ Msg Error } & Data Field & ETX & \multicolumn{3}{|c|}{ CRC (0000-FFFF) } \\
\hline ASCII & \(\wedge\) ^B & \(0-9\) & \(1-9\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & <below> & \({ }^{\wedge} \mathrm{C}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) & \(0-\mathrm{F}\) \\
\hline
\end{tabular}

Data Field - Number of Parameters x 59 characters/parameter (4 parameters max. \(=236\) characters).
-3 characters (000-999).
Parameter Number
- 2 characters (00-32).

Parameter Error Code
- 15 characters (String of 15 printable ASCII characters).

Title Text String
- 1 character (0-2).

Minimum Value*
- 10 characters (0000000000-9999999999).

Maximum Value Format*
- 1 character (0-2).

Maximum Value*
- 10 characters (0000000000-9999999999).

Default Value Format*
Default Value*
Minimum Resolution*
Maximum Resolution*
Default Resolution*
Parameter Control byte
Field Length
- 1 character (0-2).
- 10 characters (0000000000-9999999999).
- 1 character ( \(0-9\) ) Resolution for Minimum Value.
- 1 character ( \(0-9\) ) Maximum Resolution for any value.
- 1 character ( \(0-9\) ) Resolution for Default Value.
- 2 characters (ASCII HEX Number, 00 - FF).
-1 character ( \(0-9\) ) Length of parameter field.
* These fields will be filled with zeros for all Monitor Parameter requests.

Message Length \(=69\) to 246 characters

\section*{Message Error Bits Definitions:}

Bit \(7=\) (1) CRC Failure
Bit \(6=\) (1) Buffer Overflow
Bit \(5=\) (1) ETX Not Received/Data Field Error
Bit \(4=\) (1) Invalid Function/Data Error
Bit \(3=\) (1) Over-Run Error
Bit \(2=\) (1) Noise Error
Bit \(1=\) (1) Framing Error
Bit \(0=\) (1) Parity Error

Example:
" \(86 "\) " the number 10000110 (binary) would indicate a CRC failure with Noise errors and Framing errors occurred when the transmission message was received.

Other Errors Returned From The Control Through Serial Communications:
\begin{tabular}{|c|c|c|}
\hline 00 & \(=\) & OK \\
\hline 01 & = & General Data Error \\
\hline 02 & \(=\) & Res Byte Error \\
\hline 03 & = & Invalid Parameter \\
\hline 04 & \(=\) & String too Long \\
\hline 05 & = & Out of Range \\
\hline 06 & = & Not Allowed \\
\hline 07 & = & Lockout During Run \\
\hline 08 & = & Not Ready \\
\hline 09 & = & Block Parameter Error \\
\hline 10 & = & Block Value Error \\
\hline 11 & = & Block Parameter Memory Limit \\
\hline 12 & = & MIN Error \\
\hline 13 & = & MAX Error \\
\hline 14 & \(=\) & Invalid Command (PLC/Control Command Send) \\
\hline 15 & = & Invalid Operand (PLC) \\
\hline 16 & \(=\) & <END> Statement Missing (PLC) \\
\hline 17 & \(=\) & PLC Program Memory Limit \\
\hline 18 & = & Defaults Loaded \\
\hline 19 & \(=\) & Backup Loaded \\
\hline 20 & = & Backup Saved \\
\hline 21 & = & Checksum Error \\
\hline 22 & \(=\) & Faults Cleared \\
\hline 23 & = & Test Passed \\
\hline 24 & \(=\) & Test Failed \\
\hline 25 & = & No Compare Parameter \\
\hline 26 & \(=\) & Divide by Zero \\
\hline 27 & = & Long Word Overflow \\
\hline 28 & = & Parameter Transfer Limit Overflow \\
\hline 29 & = & Memory Read request too long \\
\hline 30 & = & Data Field Length Error \\
\hline 31 & = & Message Function Request/Parameter NOT Processed \\
\hline 32 & \(=\) & Invalid Function Request \\
\hline
\end{tabular}

\section*{Parameter Control Byte Definitions:}

Bit 7 = (1) Negative Numbers are Possible (0) Positive Numbers Only
Bit \(6=\) (1) Leading Zero's OK (0) No Leading Zero's
Bit 5 = (1) Restricted (0) Not Restricted
Bit \(4=\) (1) Parameter Defined (0) Parameter is NOT Defined
Bit \(3=\) Not Used (Reserved) always 0
Bit \(2=\) (1) Floating Point Number (0) Fixed Decimal Point Number
Bit \(1=\) (1) Binary Number (0) Decimal Number
Bit \(0=\) (1) Integer (0) Non-Integer

Example of CRC-16 Calculation (in C):
\#define CRC16 0x8005 /* CRC-16 Generating Poly */
/* function returns the accumulated CRC value calculated for the Buffer */
/* this value can be transmitted or compared to a CRC value received */
/* "*data" is a pointer to the Buffer of data bytes to calculate the CRC for */
/* "len" is the number of data bytes to use for the calculation */
unsigned int do_crc(unsigned char *data, int len)
\{
int \(\mathrm{i}, \mathrm{j}\);
unsigned int accum \(=0 x F F F F\);
unsigned int dat;
for \((\mathrm{i}=0 ; \mathrm{i}<\) len \(;++\mathrm{i})\{\)
dat \(=\) *data++;
accum \({ }^{\wedge}=(\) dat \(\ll 8)\);
\(\mathrm{j}=0\);
while(j++<8)\{
if(accum \& 0x8000)
accum \({ }^{\wedge}=\) CRC16;
accum <<= 1;
\}
\}
return(accum);
\}
/* byte \& bit counters */
/* CRC value accumulator */
/* holds data byte */
/* for each byte of data */
/* get data byte \& goto next */
/* put data into high byte */
/* clear bit counter */
/* for each bit */
/* if MSB set */
/* Modulus-2 math w/CRC 16 */
/* shift left 1 bit */
/* end for each bit */
/* end for each byte */
/* return the CRC value */
/* End do_crc function */

Note: This "CRC" must be converted to 4 ASCII characters before transmission. (Chars 0 to 9 and A to F should be used). For all "ASCII HEX" values the A through F characters must be in Upper Case when Transmitted in order to keep the conversions consistent.

\title{
CX-1102 Serial Communications ASCII2 Data-Link Protocol
}
(Message Transmission / Response Structures)

STX 1 Byte \({ }^{\wedge}\) B Char(2)
Address
Data Field
1 or 2 ASCII characters, normally followed by a comma
ETX
Flexible field of ASCII characters defined later in this document
1 Byte ^C Char(3)
Note: The "ETX" character may be followed by "CRC" characters if "CRC Enable" is "ON". Any reference to ASCII HEX or " \(0-\mathrm{F}\) " refers to ASCII representation of a HEX number using ASCII characters " \(0-9\) " \& "A-F".

Functions that are included in the ASCII2 Protocol:
1) Control Acknowledgment
2) Data Read Single Parameter
3) Data Write Single Parameter
4) Control Command Send
5) Data Read Custom Engineering Units
6) Data Write Custom Engineering units
7) Data Read Parameter Title
8) Data Read Maximum Parameter Value
9) Data Read Minimum Parameter Value
10) Data Read Default Parameter Value
11) Data Read Backup Parameter Value
12) Data Read Value of the Maximum Parameter Field length
13) Data Read Parameter Control Byte

\section*{Definition of Message Elements}
\begin{tabular}{|c|c|}
\hline "STX" & Signals the start of a transmission. (Host/CX-1102) A single byte ASCII Char (02) "^B". \\
\hline "Address" & Address of the CX-1102 to recognize and interpret the message. One or two ASCII characters, followed by a comma, in the range of " \(0-99\) ". (" 0 " indicates a Global Transmission to be received by all controls on the serial link). \\
\hline "Message Erro & (Msg Error) General transmission response from the CX-1102. This is a two character ASCII HEX number, in the range of " 00 " - "FF", which may indicate a serial communications error has occurred upon receipt of a message transmission. \\
\hline "Data Field" & A field of variable length which contains the data for the function requested. The Data Field is defined for individual functions through out the following section. \\
\hline "?" & Field terminator requesting response from the CX-1102. \\
\hline "," & Address and Data Field separator. \\
\hline " \(=\) " & Assignment operator indicating assignment of data to follow, or indicator of a parameter value to follow. \\
\hline "." & Indicates a Constant Table Read of type to follow. \\
\hline "! & Indicates a Control Command Send. \\
\hline "ETX" & Signals the end of the message. (Host/CX-1102) A single byte ASCII Char (03) " \({ }^{\text {C }}\) ". \\
\hline "CRC" & (Cyclic Redundancy Check) If CRC Enable is "ON", a CRC value is calculated and sent with each transmission. The CRC includes all message data except the STX byte. The data stream is checked against the CRC at the receiving end. The CRC is a four character ASCII HEX number in the range of " 0000 " - "FFFF". \\
\hline
\end{tabular}

Note: To conserve space, the CRC field has been omitted on all of the following message definition tables. If the CRC Enable is "ON", then a CRC value must be appended to each message transmission immediately following the ETX character.

\section*{FUNCTION (01) CONTROL ACKNOWLEDGMENT}

Table 7-18 Host Transmission
\begin{tabular}{|l|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 \\
\hline DESC & STX & Address & Inquiry & ETX \\
\hline ASCII & \(\wedge B\) & \(1-99\) & \(?\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Address Field}

This field may consist of one or two ASCII characters, depending on the address of the control. For example, if the address is less than 10, then only one ASCII character is required in this field. If the address is greater than 9 , then two ASCII characters are required in this field to represent the address. Leading spaces in this field will be ignored.

Table 7-19 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 \\
\hline DESC & STX & Msg Error & Separator & ACK & ETX \\
\hline ASCII & \(\wedge B\) & \(0-\mathrm{FF}\) &, & \(\wedge^{\prime} \mathrm{F}\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Msg Error Field}

This field may consist of one or two ASCII HEX characters that indicate any serial communications errors that may have occurred when the message transmission was received.

ACK
This field acknowledges that the control exists (represented by ASCII character \#6). If there is not a control at the address indicated, there will not be a response.

\section*{FUNCTION (02) DATA READ SINGLE PARAMETER}

Table 20 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline DESC & STX & Address & Separator & Parm \# & Inquiry & ETX \\
\hline ASCII & \(\wedge\) B & \(1-99\) &, & \(0-999\) & \(?\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Parm \# Field}

This field may consist of one or more ASCII characters representing the parameter number requested. If the parameter number is less than 10, then a single ASCII character may be used to represent the parameter number. If the parameter number is in the range of 10 to 99 , then two characters are required to represent the parameter number. If the parameter number is 100 or greater, then three characters are required to represent the parameter number. Any leading spaces will be ignored.

Table 21 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Value & ETX \\
\hline ASCII & \(\wedge\) B & \(0-F F\) &, & \(0-999\) & \(=\) & \(<\) below \(>\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Value Field
This field will consist of an ASCII string representing the value for the parameter requested. If there is an error retrieving the parameter value, this field will contain the error code number preceded by an "E" (e.g., "E3").

Examples with No Error:
decimal integer value of 1
decimal integer value of 1000
decimal integer value of -20
decimal value of 1234.56
decimal value of -15.00
Binary value of \(89{ }_{D}\)
\[
\begin{aligned}
& " 1 " \\
& " 1000 " \\
& "-20 " \\
& " 1234.56 " \\
& "-15.00 " \\
& " 01011001 "
\end{aligned}
\]

FUNCTION (03) DATA WRITE SINGLE PARAMETER

Table 22 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Address & Separator & Parm \# & Assign & Value & Inquiry & ETX \\
\hline ASCII & \(\wedge\) B & \(0-99\) &, & \(0-999\) & \(=\) & <below> & \(?\) & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

Value Field
This field will consist of an ASCII string representing the value to be assigned to the parameter. Leading spaces in this field will be ignored.

Examples:
\(\begin{array}{ll}\text { decimal integer value of } 1 & " 1 " \\ \text { decimal integer value of } 1 & " 1 " \\ \text { decimal integer value of } 1000 & " 1000 " \\ \text { decimal integer value of }-20 & "-20 " \\ \text { decimal value of } 1234.56 & " 1234.56 " \\ \text { decimal value of }-15.00 & "-15.00 " \\ \text { Binary value of } 89 & \text { " } 01011001 "\end{array}\)
Inquiry Field (Inq)
The inclusion of the inquiry designator is optional. If no response is required this character may be omitted from the message. If this character field is not included in the message, the operation will be performed, however the control will not respond.

Table 23 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Value & ETX \\
\hline ASCII & \(\wedge\) B & \(0-\) FF &, & \(0-999\) & \(=\) & \(<\) below & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Value Field
This field will consist of an ASCII string representing the value assigned to the parameter. If an error occurred in the assignment operation, this field will contain the error code number preceded by an "E" (e.g., "E3").

Value Field Examples with No Error:
decimal integer value of 1
decimal integer value of 1000
decimal integer value of -20
decimal value of 1234.56
decimal value of -15.00
Binary value of 89 D
```

"1"
"1000"
"-20"
"1234.56"
"-15.00"
"01011001"

```

\section*{FUNCTION (04) CONTROL COMMAND SEND}

Table 24 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline DESC & STX & Address & Separator & Command & Inquiry & ETX \\
\hline ASCII & ^B & \(0-99\) &, & ASCII2 Command String & \(?\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

List of Valid ASCII2 Command Strings:
\[
\begin{aligned}
& \text { FST! }=\text { F-Stop } \\
& \text { ULD! }=\text { Unload } \\
& \text { HST! }=\text { H-Stop } \\
& \text { RUN! }=\text { Run } \\
& \text { LDD! }=\text { Load } \\
& \text { PUD! }=\text { Set Unwind Diameter to Preset value } \\
& \text { PWD! }=\text { Set Wind Diameter to Preset value } \\
& \text { PUC! }=\text { Set Unwind Roll Content to Preset value } \\
& \text { PWC! }=\text { Set Wind Roll Content to Preset value } \\
& \text { PAU! }=\text { Set Unwind Diameter and Roll Content to Preset values } \\
& \text { PAW! }=\text { Set Wind Diameter and Roll Content to Preset values } \\
& \text { RAP! }=\text { Set Both Wind and Unwind Diameter and Roll Content to Preset values } \\
& \text { NSR! }=\text { Negate the Line Speed Scaled Reference } \\
& \text { OLW! }=\text { Open Loop Wind } \\
& \text { FWI! }=\text { Freeze the Wind Integral } \\
& \text { STR! }=\text { Stop the Line Speed Ramp } \\
& \text { OLU! }=\text { Open Loop Unwind } \\
& \text { FUI! }=\text { Freeze the Unwind Integral }
\end{aligned}
\]

\section*{Command Field}

Insert any of the valid ASCII2 command strings defined above.
Inquiry Field (Inquiry)
The inclusion of the inquiry designator is optional. If no response is required this character may be omitted from the message. If this character field is not included in the message, the commanded operation will be performed, however the control will not respond.

Table 25 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 \\
\hline DESC & STX & Msg Error & Separator & Command & ETX \\
\hline ASCII & \(\wedge B\) & \(0-\) FF &, & <below> & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Command Field}

If the requested command is acted upon, this field will contain the command string that was sent. If an error occurred, this field will contain an "E" followed immediately by an ASCII representation of the error code number which occurred. (e.g., "E31")

FUNCTION (05) DATA READ CUSTOM ENGINEERING UNITS

Table 26 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & \multicolumn{2}{|c|}{ EU Request } & Inquiry & ETX \\
\hline ASCII & \({ }^{\wedge} B\) & \(1-99\) &, & \(E\) & \(U\) & \(?\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Table 27 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Msg Error & Separator & \multicolumn{2}{|c|}{ EU Indicator } & Equals & EU Text & ETX \\
\hline ASCII & \(\wedge\) ^B & \(0-\) FF &, & E & U & \(=\) & <below> & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

Engineering Unit Text Field
This field will contain the custom engineering units text string from the control's memory. (Up to 15 printable ASCII characters long)

\section*{FUNCTION (06) DATA WRITE CUSTOM ENGINEERING UNITS}

Table 28 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline DESC & STX & Address & Separator & \multicolumn{2}{|c|}{ EU Indicator } & Assign & EU Text & Inquiry & ETX \\
\hline ASCII & \(\wedge\) B & \(0-99\) &, & \(E\) & \(\cup\) & \(=\) & <below> & \(?\) & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

\section*{EU Text Field}

This field should contain a string of up to 15 printable ASCII characters that are to be assigned to the custom engineering units text for the control at the indicated address.

\section*{Inquiry Field (Inquiry)}

The inclusion of the inquiry designator is optional. If no response is required this character may be omitted from the message. If this character field is not included in the message, the commanded operation will be performed, however the control will not respond.

Table 29 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Msg Error & Separator & \multicolumn{2}{|c|}{ EU Indicator } & Equals & EU Text & ETX \\
\hline ASCII & \(\wedge\) B & \(0-\)-FF &, & E & \(\cup\) & \(=\) & \(<\) below> & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

\section*{Engineering Unit Text Field}

If the assignment is successful, this field will contain the custom engineering units text string assigned. (Up to 15 printable ASCII characters long) If an error occurred in the assignment operation, this field will contain the error code number preceded by an "E" (e.g., "E4").

\section*{Data Read Constant Table}
7) Data Read Parameter Title
8) Data Read Maximum Parameter Value
9) Data Read Minimum Parameter Value
10) Data Read Default Parameter Value
11) Data Read Backup Parameter Value
12) Data Read Value of the Maximum Parameter Field length
13) Data Read Parameter Control Byte

Note: For all constant table reads, the host transmission message structure is the same differing only by the read command following the period.

Table 30 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline DESC & STX & Address & Separator & \multicolumn{2}{|c|}{ Parm Number } & CTR & Type & Inquiry & ETX \\
\hline ASCII & \(\wedge\) ^B & \(1-99\) &, & \(0-9\) & \(0-9\) & \(0-9\) &. & \(<\) below> & \(?\) & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

Constant Table Read Type Strings:
TTL \(=\) Parameter Title Text
MAX \(=\) Maximum Parameter Value
MIN \(=\) Minimum Parameter Value
DEF \(=\) Default Parameter Value
\(\mathrm{BKU}=\) Backup Parameter Value
FLD = Parameter Field length
\(\mathrm{CTB}=\quad\) Parameter Control Byte
CTR Field
This field should always be a period designating a Constant Table Read of type to follow for the indicated parameter.

Type Field
Insert the desired constant table read type string into this field. The control will respond with the appropriate data for the type of read requested. This is a three character field.

\section*{FUNCTION (07) DATA READ PARAMETER TITLE}

Table 31 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Parm Title Tex & ETX \\
\hline ASCII & ^B & \(0-\) FF &, & \(1-999\) & \(=\) & <below> & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Parm Title Text Field
This field will contain an ASCII string of 15 characters for the title of the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

Table 32 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Max Parm Value & ETX \\
\hline ASCII & \(\wedge\) A & \(0-\) FF &, & \(1-999\) & \(=\) & <below> & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Max Parm Value Field
This field will contain an ASCII string Representation of the numeric maximum value for the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

\section*{FUNCTION (09) DATA READ MINIMUM PARAMETER VALUE}

Table 33 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Min Parm Value & ETX \\
\hline ASCII & \(\wedge\) A & \(0-\) FF &, & \(1-999\) & \(=\) & \(<\) below> & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Min Parm Value Field
This field will contain an ASCII string Representation of the numeric minimum value for the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

Table 34 CX-1 102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Default Parm Value & ETX \\
\hline ASCII & \(\wedge\) B & \(0-\) FF &, & \(1-999\) & \(=\) & <below> & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Default Parm Value Field
This field will contain an ASCII string Representation of the numeric default value for the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

\section*{FUNCTION (11) DATA READ BACKUP PARAMETER VALUE}

Table 35 CX-1 102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Backup Parm Value & ETX \\
\hline ASCII & \(\wedge\) ^B & \(0-\) FF &, & \(1-999\) & \(=\) & <below> & \({ }^{\wedge} C\) \\
\hline
\end{tabular}

Backup Parm Value Field
This field will contain an ASCII string Representation of the numeric backup value for the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

FUNCTION (12) DATA READ VALUE OF THE MAXIMUM PARAMETER FIELD LENGTH

Table 36 CX-1 102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Parm Field Length & ETX \\
\hline ASCII & \(\wedge\) B & \(0-\) FF &, & \(1-999\) & \(=\) & \(0-9\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

Parm Field Length Field
This field will contain an ASCII character, of the range 0 to 9 , for the field length of the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

\section*{FUNCTION (13) DATA READ PARAMETER CONTROL BYTE}

Table 37 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Character \# & 1 & 2 & 3 & 4 & 5 & \(6-13\) & 14 \\
\hline DESC & STX & Msg Error & Separator & Parm \# & Equals & Parm Control Byte & ETX \\
\hline ASCII & \(\wedge\) A & \(0-\) FF &, & \(1-999\) & \(=\) & \(0-1\) & \({ }^{\wedge} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Parameter Control Byte Field}

This field will contain an ASCII string of 8 characters, of the range 0 to 1 , representing, in binary format, the parameter control byte for the parameter requested. If there is an error in the request, this field will contain the error code number preceded by an "E" (e.g., "E3").

Parameter Control Byte field per Table 37
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Character \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline DESC & Bit 7 & Bit 6 & Bit 5 & Bit 4 & Bit 3 & Bit 2 & Bit 1 & Bit 0 \\
\hline ASCII & \(0-1\) & \(0-1\) & \(0-1\) & \(0-1\) & \(0-1\) & \(0-1\) & \(0-1\) & \(0-1\) \\
\hline
\end{tabular}

Parameter Control Byte Definitions:
Bit 7 = (1) Negative Numbers are Possible (0) Positive Numbers Only
Bit \(6=\) (1) Leading Zero's OK (0) No Leading Zero's
Bit 5 = (1) Restricted (0) Not Restricted
Bit \(4=\) (1) Parameter Define (0) Parameter is NOT Defined
Bit \(3=\) Not Used (Reserved) always 0
Bit \(2=\) (1) Floating Decimal Point Number (0) Fixed Decimal Point Number
Bit \(1=\) (1) Binary Number (0) Decimal Number
Bit \(0=\) (1) Integer (0) Non-Integer
Message Error Response Field
Consists of 2 Bytes (ASCII "HEX")
"ASCII HEX" means the numeric value in the field is NOT represented as a decimal (Base 10) Number. The Number is represented by the characters: 0 through 9 and A through F for the HEX equivalent of the binary number.

Message Error Bit Definitions:
Bit \(7=\) (1) CRC Failure
Bit \(6=\) (1) Buffer Overflow
Bit 5 = (1) ETX Not Received/Data Field Error
Bit \(4=\) (1) Invalid Function/Data Error
Bit \(3=\) (1) Over-Run Error
Bit \(2=\) (1) Noise Error
Bit \(1=\) (1) Framing Error
Bit \(0=\) (1) Parity Error
Example:
" 86 " = the number 10000110 (binary) would indicate a CRC failure with Noise errors and Framing errors occurred when the transmission message was received.

Other Errors Returned From The Control Through Serial Communications:
\begin{tabular}{ll}
00 & \(=\) OK \\
01 & \(=\) General Data Error \\
02 & \(=\) Res Byte Error \\
03 & \(=\) Invalid Parameter \\
04 & \(=\) String too Long \\
05 & \(=\) Out of Range \\
06 & \(=\) Not Allowed \\
07 & \(=\) Lockout During Run \\
08 & \(=\) Not Ready \\
09 & \(=\) Block Parameter Error \\
10 & \(=\) Block Value Error \\
11 & \(=\) Block Parameter Memory Limit \\
12 & \(=\) MIN Error \\
13 & \(=\) MAX Error \\
14 & \(=\) Invalid Command (PLC/Control Command Send) \\
15 & \(=\) Invalid Operand (PLC) \\
16 & \(=\) <END> Statement Missing (PLC) \\
17 & \(=\) PLC Program Memory Limit \\
18 & \(=\) Defaults Loaded \\
19 & \(=\) Backup Loaded \\
20 & \(=\) Backup Saved \\
21 & \(=\) Checksum Error \\
22 & \(=\) Faults Cleared \\
23 & \(=\) Test Passed \\
24 & \(=\) Test Failed \\
25 & \(=\) No Compare Parameter \\
26 & \(=\) Divide by Zero \\
27 & \(=\) Long Word Overflow \\
28 & \(=\) Parameter Transfer Limit Overflow \\
29 & \(=\) Memory Read request too long \\
30 & \(=\) Data Field Length Error \\
31 & \(=\) Message Function Request/Parameter NOT Processed \\
32 & \(=\) Invalid Function Request \\
&
\end{tabular}

Note: In the ASCII2 protocol the error codes listed above are preceded by an "E" (e.g., "E32" indicates an Invalid Function Request)

Example of CRC-16 Calculation (in C):
```

\#define CRC16 0x8005
/* CRC-16 Generating Poly */
/* function returns the accumulated CRC value calculated for the Buffer */
/* this value can be transmitted or compared to a CRC value received */
/* "*data" is a pointer to the Buffer of data bytes to calculate the CRC for */
/* "len" is the number of data bytes to use for the calculation */
unsigned int do_crc(unsigned char *data, int len)
{
int i, j;
unsigned int accum = 0xFFFF;
unsigned int dat;
for(i = 0; i < len; ++i){
dat = *data++;
accum ^= (dat << 8);
j = 0;
while(j++<8){
if(accum \& 0x8000)
accum ^= CRC16;
accum <<= 1;
}
}
return(accum); /* return the CRC value */
}
/* byte \& bit counters */
/* CRC value accumulator */
/* holds data byte */
/* for each byte of data */
/* get data byte \& goto next */
/* put data into high byte */
/* clear bit counter */
/* for each bit */
/* if MSB set */
/* Modulus-2 math w/CRC 16 */
/* shift left 1 bit */
/* end for each bit */
/* end for each byte */
/* End do_crc function */

```

Note: This "CRC" must be converted to 4 ASCII characters before transmission. (Chars 0 to 9 and A to F should be used). For all "ASCII HEX" values the A through F characters must be in Upper Case when Transmitted in order to keep the conversions consistent.

\section*{CX-1102 Serial Communications Binary Data-Link Protocol}
(Message Transmission / Response Structures)
\begin{tabular}{ll} 
STX & BYTE \\
Length & BYTE \\
Address & BYTE \\
Function & BYTE \\
Message Error & BYTE \\
Data Field & Defined later for each function type \\
ETX & BYTE \\
CRC & WORD (2 BYTES)
\end{tabular}

Valid Binary Protocol Functions:
1) Data Read Single Parameter
2) Data Write Single Parameter
3) Data Read Parameter Block (Limit 16)
4) Data Write Parameter Block (Limit 16)
5) Control Commands
6) PLC Program Download from Control
7) PLC Program Upload to Control
8) Custom Engineering Units Download
9) Custom Engineering Units Upload
10) Data Read Constant Table (Limit 6)
11) Parameter Data Trace Enable/Disable (enables/disables the CX-1102's ability to collect data traces)
12) Data Read Parameter Trace (read consecutive trace data from the CX-1102)
13) Data Read Trace Status Byte

Example:
Request for CP-210

Table 38 Data Read Single Parameter, Host Transmission
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline STX & LEN & ADDR & FUNC & DATA & ETX & CRC \\
\hline 02 & 09 & 01 & 01 & \(00 D 2\) & 03 & \(0 C 56\) \\
\hline
\end{tabular}

\section*{Definition of Message Elements}
"STX" Signals the start of a transmission (Host/CX-1102)
"Length" Length of complete message in bytes including STX, ETX, \& CRC
"Address"
"Function"
"Message Error"
"Data Field"
"ETX"
"CRC"
(Cyclic Redundancy Check) The CRC is calculated and sent with each transmission. It includes all message data except the STX byte. The data stream is checked against the CRC at the receiving end.
"Resolution Character" (Res) An ASCII character, in the range of "0-9", that indicates the number of digits to the right of the decimal point for the value.

Table 39 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline DESC & STX & Length & Address & Function & Parm Number & ETX & CRC \\
\hline Decimal & 2 & 9 & \(1-99\) & 1 & \(1-999\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 09 & \(01-63\) & 01 & \(0001-03 E 7\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=9\) bytes

Table 40 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline DESC & STX & Length & Address & \begin{tabular}{l} 
Msg \\
Error
\end{tabular} & \begin{tabular}{c} 
Error \\
Code
\end{tabular} & \begin{tabular}{c} 
Control \\
Byte
\end{tabular} & Res & Parameter Value & ETX & CRC \\
\hline Decimal & 2 & 14 & \(1-99\) & \(0-255\) & \(0-32\) & \(0-244\) & \(0-9\) & \begin{tabular}{c}
-2147483648 \\
2147483647
\end{tabular} & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 E\) & \(01-63\) & \(00-\) FF & \(00-20\) & \(00-\) F4 & \(00-09\) & \(80000000-7\) FFFFFFF & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field -(7 Bytes)
Parameter Error Code - 1 byte
Parameter Control byte - 1 byte
Resolution
- 1 byte

Parameter Value
- LONG (4 bytes)

Message Length \(=14\) bytes

Table 41 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline DESC & STX & Length & Address & Func & Parm Number & Res & \multicolumn{2}{|c|}{ Parameter Value } & ETX & CRC \\
\hline Decimal & 2 & 14 & \(0-99\) & 2 & \(101-999\) & \(0-9\) & \begin{tabular}{c}
-2147483648 \\
2147483647
\end{tabular} & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 E\) & \(00-63\) & 02 & \(0065-03 E 7\) & \(00-09\) & \(80000000-7 F F F F F F F\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field -(7 Bytes)
Parameter Number - WORD (2 bytes)
Resolution - 1 byte
Parameter Value - LONG (4 bytes)
Message Length \(=14\) bytes

Table 42 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Error Code & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-32\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-\) FF & \(00-20\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=8\) bytes

Table 43 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline DESC & STX & Length & Address & Function & Parm Number & ETX & CRC \\
\hline Decimal & 2 & \(9-39\) & \(1-99\) & 3 & \(1-999\) & 3 & \(0-65535\) \\
\hline Hex & 02 & \(09-27\) & \(01-63\) & 03 & \(0001-03 E 7\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 43
Number of parameters x 2 bytes/parameter (16 parameters max. \(=32\) bytes)
Parameter Number - WORD (2 bytes) for each parameter request
Message Length \(=9\) to 39 bytes

Table 44 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-13\) & 14 & 15 & 16 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & \(16-151\) & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(10-97\) & \(01-63\) & \(00-F F\) & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 44
Number of parameters x 9 bytes/parameter ( 16 parameters max. \(=144\) bytes)
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline DESC & \begin{tabular}{c} 
Error \\
Code
\end{tabular} & Parmameter Number & \begin{tabular}{c} 
Control \\
Byte
\end{tabular} & Res & \multicolumn{3}{|c|}{ Parameter Value } \\
\hline Decimal & \(0-32\) & \(1-999\) & \(0-244\) & \(0-9\) & \multicolumn{2}{c|}{\(-2147483648-2147483647\)} \\
\hline Hex & \(00-20\) & \(0000-03 E 7\) & \(00-\) F4 & \(00-09\) & \multicolumn{2}{c|}{\(80000000-7 F F F F F F F\)} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Parameter Error Code & -1 byte \\
Parameter Number & - WORD (2 bytes) \\
Parameter Control byte -1 byte \\
Resolution & -1 byte \\
Parameter Value & - LONG ( 4 bytes)
\end{tabular}

Message Length \(=16\) to 151 bytes

\section*{FUNCTION (04) DATA WRITE PARAMETER BLOCK}

Table 45 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-11\) & 12 & 13 & 14 \\
\hline DESC & STX & Length & Address & Function & Data Field & ETX & CRC \\
\hline Decimal & 2 & \(14-199\) & \(0-99\) & 4 & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 E-77\) & \(00-63\) & 04 & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 45
Number of parameters x 7 bytes/parameter ( 16 parameters max. \(=112\) bytes)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Byte \# & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline DESC & Parameter Number & Resolution & \multicolumn{3}{c|}{ Parameter Value } \\
\hline Decimal & \(101-999\) & \(0-9\) & \multicolumn{3}{c|}{-2147483648 to 2147483647 } \\
\hline Hex & \(0065-03 E 7\) & \(00-09\) & \multicolumn{2}{c|}{\(80000000-7 F F F F F F F\)} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Parameter Number & - WORD (2 bytes) \\
Resolution & -1 byte \\
Parameter Value & - LONG (4 bytes)
\end{tabular}

Message Length \(=14\) to 119 bytes

Table 46 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-7\) & 8 & 9 & 10 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & \(10-55\) & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 A-37\) & \(01-63\) & \(00-\) FF & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 46
Number of Parameters x 3 bytes/parameter ( 16 parameters max. \(=48\) bytes)
\begin{tabular}{|l|c|c|c|}
\hline Byte \# & 5 & 6 & 7 \\
\hline DESC & Error Code & \multicolumn{2}{|c|}{ Parameter Number } \\
\hline Decimal & \(0-32\) & \(1-999\) \\
\hline Hex & \(00-20\) & \(001-03 E 7\) \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Parameter Error Code } & \text { - BYTE } \\ \text { Parameter Number } & \text { - WORD (2 Bytes) }\end{array}\)
Message Length \(=10\) to 55 bytes

FUNCTION (05) DATA WRITE CONTROL COMMAND

Table 47 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Function & Command & ETX & CRC \\
\hline Decimal & 2 & 8 & \(0-99\) & 5 & \(1-24\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(00-63\) & 05 & \(01-18\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Valid Control Commands:
\[
\begin{array}{ll}
01(01)= & \text { F-Stop } \\
02(02)= & \text { R-Stop } \\
03(03)= & \text { H-Stop } \\
04(04)= & \text { Run } \\
05(05)= & \text { Jog Forward } \\
06(06)= & \text { Jog Reverse } \\
07(07)= & \text { Jog Stop } \\
09(09)= & \text { Reset Integral } \\
10(0 \mathrm{~A})= & \text { Preset Feedback Position } \\
11(0 \mathrm{~B})= & \text { Preset Lead Position } \\
12(0 \mathrm{C})= & \text { Reset Position Error } \\
13(0 \mathrm{D})= & \text { Preset Feedback \& Lead Position } \\
14(0 \mathrm{E})= & \text { Preset Feedback \& Lead Position and Reset Position Error } \\
17(11)= & \text { Negate Scaled Reference } \\
21(15)= & \text { Bypass Ramp } \\
22(16)= & \text { Stop Ramp } \\
23(17)= & \text { Open Loop } \\
24(18)= & \text { Stop Integral }
\end{array}
\]

Message Length \(=8\) bytes

Table 48 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Error Code & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-32\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-F F\) & \(00-20\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=8\) bytes

Table 49 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Function & PLC Type & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & 6 & \(0-1\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & 06 & \(00-01\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

PLC Program Type:
\(00=\) Default Program
\(01=\) Current User Program
Message Length \(=8\) bytes

Table 50 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-132\) & 133 & 134 & 135 \\
\hline DESC & STX & Length & Address & Msg Error & PLC Program & ETX & CRC \\
\hline Decimal & 2 & \(9-135\) & \(1-99\) & \(0-255\) & \(0-255\) & 3 & \(0-65535\) \\
\hline Hex & 02 & \(09-87\) & \(01-63\) & \(00-\) FF & \(00-\) FF & 03 & \(0000-\)-FFFF \\
\hline
\end{tabular}

PLC Program Field - (2 to 128 Bytes)
This field will contain the PLC Program Requested, which may be any where from 2 to 128 bytes of data. The format for this data will be in pairs of Commands \& Operands:

PLC Command - 1 byte PLC Operand - 1 byte

Refer to Appendices: Appendix \(K\) for the PLC Program Commands and Appendices: Appendix L for the PLC Program Operands.

Message Length \(=9\) to 135 bytes

\section*{FUNCTION (07) DATA WRITE PLC PROGRAM}

Table 51 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-132\) & 133 & 134 & 135 \\
\hline DESC & STX & Length & Address & Function & PLC Program & ETX & CRC \\
\hline Decimal & 2 & \(9-135\) & \(0-99\) & 7 & \(0-255\) & 3 & \(0-65535\) \\
\hline Hex & 02 & \(09-87\) & \(00-63\) & 07 & \(00-\) FF & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

PLC Program Field - (2 to 128 Bytes)
This field should contain a PLC Program, which may be any where from 2 to 128 bytes of data. The format for this data should be in pairs of Commands \& Operands:

PLC Command -1 byte
PLC Operand -1 byte
Refer to Appendices: Appendix \(K\) for the PLC Program Commands and Appendices: Appendix L for the PLC Program Operands.

Message Length \(=9\) to 135 bytes

Table 52 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Error Code & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-32\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-F F\) & \(00-20\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=8\) bytes

FUNCTION (08) DATA READ CUSTOM ENGINEERING UNITS

Table 53 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Length & Address & Function & ETX & CRC \\
\hline Decimal & 2 & 7 & \(1-99\) & 8 & 3 & \(0-65535\) \\
\hline Hex & 02 & 07 & \(01-63\) & 08 & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=7\) bytes

Table 54 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-19\) & 20 & 21 & 22 \\
\hline DESC & STX & Length & Address & Msg Error & EU Text & ETX & CRC \\
\hline Decimal & 2 & \(8-22\) & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(08-16\) & \(01-63\) & \(00-\) FF & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

EU Text Field - Engineering Units Text String (0 to 15 Printable ASCII characters)
Message Length \(=7\) to 22 bytes

FUNCTION (09) DATA WRITE CUSTOM ENGINEERING UNITS

Table 55 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-19\) & 20 & 21 & 22 \\
\hline DESC & STX & Length & Address & Function & EU Text & ETX & CRC \\
\hline Decimal & 2 & \(8-22\) & \(0-99\) & 9 & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(08-16\) & \(00-63\) & 09 & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

EU Text Field - Engineering Units Text String (1 to 15 Printable ASCII characters)
Message Length \(=8\) to 22 bytes

Table 56 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Error Code & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-32\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-\) FF & \(00-20\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=8\) bytes

Table 57 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-6\) & 7 & 8 & 9 \\
\hline DESC & STX & Length & Address & Function & Parameter \# & ETX & CRC \\
\hline Decimal & 2 & \(9-19\) & \(1-99\) & 10 & \(1-999\) & 3 & \(0-65535\) \\
\hline Hex & 02 & \(09-13\) & \(01-63\) & \(0 A\) & \(0001-03 E 7\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Parameter Number Field - Number of parameters x 2 bytes/parameter ( 6 parameters max. \(=12\) bytes)
Message Length \(=9\) to 19 bytes
Table 58 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-220\) & 221 & 222 & 223 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & \(43-223\) & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & 2B-DF & \(01-63\) & \(00-\) FF & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field - Number of parameters x 36 bytes/parameter ( 6 parameters max. \(=216\) bytes)

Parameter Number
Parameter Error Code
Parameter Title
Minimum Value*
Maximum Value*
Default Value*
Resolution for Minimum*
Maximum Resolution*
Resolution for Default*
Parameter Control byte
Field Length
-WORD (2 bytes) (0000-03E7)
-1 byte (00-20)
-16 bytes (String of 16 Printable ASCII characters)
-LONG (4 bytes) (80000000-7FFFFFFF)
-LONG (4 bytes) (80000000-7FFFFFFF)
-LONG (4 bytes) (80000000-7FFFFFFF)
-1 byte (00-09)
-1 byte (00-09)
-1 byte (00-09)
-1 byte ( \(00-\mathrm{F} 4\) )
-1 byte (00-09)
* These fields will be filled with zeros for all Monitor Parameter requests.

Message Length \(=43\) to 223 bytes

\section*{FUNCTION (11) PARAMETER TRACE ENABLE/DISABLE}

This function is used to setup and control the CX-1102 internal data collection feature: "Data Trace".

\section*{CX-1102 internal data collection feature}

The CX-1102 control has the capability to record 1 millisecond samples of up to 4 monitor parameters. The total size is 8192 samples (data points). The number of "Traces" (monitor parameters sampled) may be 1 (single trace), 2 (dual trace), or 4 (quad trace). The number of samples collected per trace are listed below:

Number of Samples per Trace
\begin{tabular}{|c|c|c|c|}
\hline \# of Trace Parameters & Description & Samples per Trace Parameter & Total Sample Time \\
\hline 1 & Single Trace & 8192 & 8.192 Sec \\
\hline 2 & Dual Trace & 4096 & 4.096 Sec \\
\hline 4 & Quad Trace & 2048 & 2.048 Sec \\
\hline
\end{tabular}

Configuration:
For a single trace, set the value for Trace Parameter 1 to the desired monitor parameter number, and set the rest of the Trace Parameters to zero (0).

For a dual trace, set the values for Trace Parameter 1 and 2 to the desired monitor parameter numbers, and set the rest of the Trace Parameters to zero (0).

For a quad trace, set all of the values for Trace Parameters 1 thru 4 to the desired monitor parameter numbers.

\section*{Trigger:}

The trace sampling begins when a "trigger" is encountered, after the "data trace" has been enabled. The trigger is signaled through the PLC program by the "start trace" bit (167) transition from 0 to 1 .

The CX-1102 control has the capability to collect "pre-trigger" data samples. These are samples collected prior to a "trigger". The "pre-trigger time" is variable from 0 seconds to 2.000 seconds, and is setup by the pre-trigger time (Pre-Trig) value and resolution in a "Set Trace Configuration" message (defined later in this section).

Actions taken by the CX-1102 control in response to this function (11) are controlled by a "message control byte" defined below.

\section*{Control Byte Definitions:}

Bit \(7=\) Not Used (always 0 )
Bit \(6=\operatorname{Not}\) Used (always 0 )
Bit \(5=\operatorname{Not}\) Used (always 0 )
Bit \(4=\operatorname{Not}\) Used (always 0 )
Bit \(3=\operatorname{Not}\) Used (always 0 )
Bit 2 = (1) Set Trace configuration (Pre-Trigger setting, and all Trace Parameter numbers)
Bit \(1=\) (1) Read Data Trace configuration (Pre-Trigger setting, and all Trace Parameter numbers)
Bit \(0=(1)\) Enable the Data Trace collection and wait for a trigger point (0) Disable the Trace collection "stop"

Message Control byte definition description:
Value \(\quad\) CX-1102 Control actions
\(00 \quad\) Disable Trace, stop collecting data
01 Enable Trace, wait for trigger
02 Read Trace Configuration, ignore bit 0
03 Read Trace Configuration, ignore bit 0
04 Set Trace Config, Disable Trace, stop
05 Set Trace Config, Reset Trace, wait for trigger
06 Set \& Read Trace Config \& Disable Trace, stop
CX-1102 Response
Error code
Error code
Status Byte, Trace Configuration
Status Byte, Trace Configuration
Configuration Error Codes
Configuration Error Codes
07 Set \& Read Trace Config \& Reset, wait for trigger Error Codes \& Trace Configuration

Trace Status Byte Definitions:
Bit \(7=\) Not Used (always 0)
Bit \(6=\) Not Used (always 0)
Bit \(5=\) Not Used (always 0)
Bit \(4=\) Not Used (always 0)
Bit \(3=(1)\) Trace complete (0) Trace not complete
Bit \(2=(1)\) Trace active, trigger encountered, collecting data (0) No Trigger encountered
Bit \(1=(1)\) Trigger enabled, collecting data, waiting for trigger (0) Trigger disabled
Bit \(0=(1)\) Trace enabled (0) Trace disabled

Trace Status Byte values:
\(00=\) Trace disabled
\(01=\) Trace enabled
\(03=\) Trace enabled, collecting pre-trigger data, waiting for trigger
\(05=\) Trace enabled, trigger encountered, collecting data
\(08=\) Trace complete, data collected

Set Trace Configuration, Read Trace Configuration, and enable or disable the internal trace data capture Message Control byte value: 6 or 7

Table 59 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & \(6-16\) & 17 & 18 & 19 \\
\hline DESC & STX & Length & Address & Function & Control & Data Field & EXT & CRC \\
\hline Decimal & 2 & 19 & \(1-99\) & 11 & 6 or 7 & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & 13 & \(01-63\) & \(0 B\) & 06 or 07 & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 59
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline DESC & Trace Parm 1 & Trace Parm 2 & Trace Parm 3 & Trace Parm 4 & Pre-Trigger & Resolution \\
\hline Decimal & \(0-90\) & \(0-90\) & \(0-90\) & \(0-90\) & \(0.000-2.000\) & \(0-3\) \\
\hline Hex & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-07 \mathrm{D0}\) & \(00-03\) \\
\hline
\end{tabular}

Message length \(=19\) bytes
Result: Trace parameters 1 to 4 and the pre-trigger time value are all set, and the Trace Data collection is enabled or disabled. The values for the Trace Parameters are returned along with the Pre-Trigger setting.

Table 60 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-20\) & 21 & 22 & 23 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & 23 & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & 17 & \(01-63\) & \(00-\) FF & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 60
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & \multicolumn{1}{|c|}{5} & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline DESC & Error & \begin{tabular}{l} 
Trace \\
Parm 1
\end{tabular} & Error & \begin{tabular}{l} 
Trace \\
Parm 2
\end{tabular} & Error & \begin{tabular}{l} 
Trace \\
Parm 3
\end{tabular} & Error & \begin{tabular}{l} 
Trace \\
Parm 4
\end{tabular} & Error & Pre-Trigger & Res \\
\hline Decimal & \(0-32\) & \(0-90\) & \(0-32\) & \(0-90\) & \(0-32\) & \(0-90\) & \(0-32\) & \(0-90\) & \(0-32\) & \(0.000-2.000\) & \(0-3\) \\
\hline Hex & \(00-20\) & \begin{tabular}{l}
\(0000-\) \\
\(005 A\)
\end{tabular} & \(00-20\) & \begin{tabular}{l}
\(0000-\) \\
\(005 A\)
\end{tabular} & \(00-20\) & \begin{tabular}{c}
\(0000-\) \\
\(005 A\)
\end{tabular} & \(00-20\) & \(0000-\) & \(00-20\) & \(0000-07 D 0\) & \(00-03\) \\
\hline
\end{tabular}

Message length \(=23\) bytes

Response Data Field Definitions:
\begin{tabular}{lll} 
Byte \# & Type & Description \\
5 & byte & Error code result from Setting Trace Parameter 1 \\
\(6-7\) & UINT & Trace Parameter 1 value \\
8 & byte & Error code result from Setting Trace Parameter 2 \\
\(9-10\) & UINT & Trace Parameter 2 value \\
11 & byte & Error code result from Setting Trace Parameter 3 \\
\(12-13\) & UINT & Trace Parameter 3 value \\
14 & byte & Error code result from Setting Trace Parameter 4 \\
\(15-16\) & UINT & Trace Parameter 4 value \\
17 & byte & Error code result from Setting Pre-Trigger Time \\
\(18-19\) & UINT & Pre-Trigger Time value setting (seconds) \\
20 & byte & Pre-Trigger Time value resolution byte
\end{tabular}

Set Trace Configuration and enable or disable the internal trace data capture.
Message Control byte value: 4 or 5
Table 61 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & \(6-16\) & 17 & 18 & 19 \\
\hline DESC & STX & Length & Address & Function & Control & Data Field & EXT & CRC \\
\hline Decimal & 2 & 19 & \(1-99\) & 11 & 4 or 5 & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & 13 & \(01-63\) & \(0 B\) & 04 or 05 & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 61
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline DESC & Trace Parm 1 & Trace Parm 2 & Trace Parm 3 & Trace Parm 4 & Pre-Trigger & Resolution \\
\hline Decimal & \(0-90\) & \(0-90\) & \(0-90\) & \(0-90\) & \(0.000-2.000\) & \(0-3\) \\
\hline Hex & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-07 \mathrm{D} 0\) & \(00-03\) \\
\hline
\end{tabular}

Message length \(=19\)
Result: Trace parameters 1 to 4 and the pre-trigger time value are all set, and the Trace Data collection is enabled or disabled.

Table 62 CX-1 102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-9\) & 10 & 11 & 12 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & 12 & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 C\) & \(01-63\) & \(00-\) FF & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 62
\begin{tabular}{|l|c|c|c|c|c|}
\hline Byte \# & 5 & 6 & 7 & 8 & 9 \\
\hline DESC & TrcParm 1 Error & TrcParm 2 Error & TrcParm 3 Error & TrcParm 4 Error & Pre-Trigger Error \\
\hline Decimal & \(0-32\) & \(0-32\) & \(0-32\) & \(0-32\) & \(0-32\) \\
\hline Hex & \(00-20\) & \(00-20\) & \(00-20\) & \(00-20\) & \(00-20\) \\
\hline
\end{tabular}

Message length \(=12\) bytes

Message Control byte value: 2 or 3
Table 63 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Function & Control & EXT & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & 11 & 2 or 3 & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(0 B\) & 02 or 03 & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message length \(=8\) bytes
Result: The Data Trace is neither enabled nor disabled. The Trace configuration is simply returned in the response along with the Trace Status byte.

Table 64 CX-1 102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-16\) & 17 & 18 & 19 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & 19 & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & 13 & \(01-63\) & \(00-\mathrm{FF}\) & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 64
\begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Byte \# & & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\hline DESC & Status & Trace Parm 1 & Trace Parm 2 & Trace Parm 3 & Trace Parm 4 & Pre-Trigger & Res \\
\hline Decimal & \(0-8\) & \(0-90\) & \(0-90\) & \(0-90\) & \(0-90\) & \(0-2.000\) & \(0-3\) \\
\hline Hex & \(00-08\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-005 \mathrm{~A}\) & \(0000-07 \mathrm{D} 0\) & \(00-03\) \\
\hline
\end{tabular}

Message length \(=19\) bytes

Table 65 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Function & Data & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & 11 & \(0-1\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(0 B\) & \(00-01\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field:
\(00=\) Disable Data Trace Collection
\(01=\) Enable Data Trace Collection and reset data pointers to the beginning, start collecting new data and wait for a trigger point.

Message Length \(=8\) bytes

Table 66 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Error Code & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-32\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-\) FF & \(00-20\) & 03 & \(0000-F F F F\) \\
\hline
\end{tabular}

An Error Code of " 00 " indicates that the action was taken and was completed. Refer to page \(7-53\) for other error code responses.

Message Length \(=8\) bytes

\section*{FUNCTION (12) DATA READ PARAMETER TRACE}

Use this function to read consecutive trace data from the control, re-read the last data set, or reset and re-read the trace data from the beginning again.

Table 67 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Function & Control & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & 12 & \(0-2\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(0 C\) & \(00-02\) & 03 & \(0000-F F F F\) \\
\hline
\end{tabular}

Control Byte (5) definition:
\(00=\) Reset and re-read from beginning
\(01=\) Continue reading from end of the last data point that was read \(02=\) Re-read the prior data segment

Message Length \(=8\) bytes

Table 68 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & \(5-245\) & 246 & 247 & 248 \\
\hline DESC & STX & Length & Address & Msg Error & Data Field & ETX & CRC \\
\hline Decimal & 2 & \(12-248\) & \(1-99\) & \(0-255\) & <below> & 3 & \(0-65535\) \\
\hline Hex & 02 & \(0 C\) & \(01-63\) & \(00-F F\) & <below> & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Data Field per Table 68
Length \(=1+[4 \mathrm{x}\) Number of data points \(]\)
\begin{tabular}{|l|c|c|c|c|}
\hline Byte \# & 5 & 6 & 7 & 8 \\
\hline DESC & Status/Error Code & \multicolumn{3}{|c|}{ Trace Data } \\
\hline Decimal & \(0-32\) & \multicolumn{3}{|c|}{\(-2147483648-2147483647\)} \\
\hline Hex & \(00-20\) & \multicolumn{3}{|c|}{\(80000000-7 F F F F F F F\)} \\
\hline
\end{tabular}

\footnotetext{
Trace Read Status/Error Code - 1 byte/response
Trace Data - LONG (4 bytes/data point*)
*Maximum of 60 Data Points/Transmission ( \(1+\left[\begin{array}{ll}4 & \mathrm{x} \\ 60\end{array}\right]=241\) bytes \()\)
}

\section*{FUNCTION (13) READ PARAMETER TRACE DATA/RE-READ PREVIOUS}

Use this function to read the trace status byte.
Status Byte Definitions:
\begin{tabular}{ll} 
Bit 7 & \(=\) Not Defined (always 0) \\
Bit 6 & \(=\) Not Defined (always 0) \\
Bit 5 & \(=\) Not Defined (always 0) \\
Bit 4 & \(=\) Not Defined (always 0) \\
Bit \(3=(1)\) Trace Complete (0) Not Complete \\
Bit \(2=(1)\) Trace Active (trigger encountered, collecting data) (0) Not Active \\
Bit \(1=\) (1) Trace Enabled (waiting for trigger to occur) (0) Disabled \\
Bit 0 & \(=\) (1) Trace Enabled (0) Disabled
\end{tabular}

Table 69 Host Transmission
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline DESC & STX & Length & Address & Function & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & 13 & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(0 D\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Message Length \(=7\) bytes

Table 70 CX-1102 Response
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline Byte \# & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline DESC & STX & Length & Address & Msg Error & Status & ETX & CRC \\
\hline Decimal & 2 & 8 & \(1-99\) & \(0-255\) & \(0-8\) & 3 & \(0-65535\) \\
\hline Hex & 02 & 08 & \(01-63\) & \(00-\) FF & \(00-08\) & 03 & \(0000-\) FFFF \\
\hline
\end{tabular}

Status Bytes values:

Bits
\begin{tabular}{cccl}
\(\underline{76543210}\) & \begin{tabular}{c} 
Decimal:
\end{tabular} & & \begin{tabular}{l} 
Description \\
00000000
\end{tabular} \\
00000001 & \(=1\) & & Trace Disabled, no data collected. \\
00000011 & \(=3\) & & Trace Enabled. \\
00000101 & \(=5\) & & Trigger Enabled, waiting for trigger. \\
00001000 & \(=8\) & & Trigger Completed, collecting data. \\
0 & \(=8\) &
\end{tabular}

Message Length \(=8\) bytes

\section*{Message Error Response Field}

This field consists of one byte. Each bit in the byte may be set to 1 indicating a specific error has occurred.

Message Error Bits Definitions:
Bit \(7=\) (1) CRC Failure
Bit \(6=\) (1) Buffer Overflow
Bit \(5=\) (1) ETX Not Received/Data Field Error
Bit \(4=\) (1) Invalid Function/Data Error
Bit \(3=\) (1) Over-Run Error
Bit \(2=\) (1) Noise Error
Bit \(1=\) (1) Framing Error
Bit \(0=\) (1) Parity Error

Example:
" \(86 "\) " the number 10000110 (binary) would indicate a CRC failure with Noise errors and Framing errors occurred when the transmission message was received.

\section*{Other Errors Returned From Control Through The Serial Communications}
```

O(00) = OK
1(01) = General Data Error
2(02) = Res Byte Error
3(03) = Invalid Parameter
4(04) = String too Long
5(05) = Out of Range
6(06) = Not Allowed
7(07) = Lockout During Run
8(08) = Not Ready
9(09) = Block Parameter Error
10(0A) = Block Value Error
11(0B) = Block Parameter Memory Limit
12(0C) = MIN Error
13(0D) = MAX Error
14(0E) = Invalid Command (PLC/Control Command Send)
15(0F) = Invalid Operand (PLC)
16(10) = <END> Statement Missing (PLC)
17(11) = PLC Program Memory Limit
18(12) = Defaults Loaded
19(13) = Backup Loaded
20 (14) = Backup Saved
21 (15) = Checksum Error
22(16) = Faults Cleared
23(17) = Test Passed
24(18) = Test Failed
25(19) = No Compare Parameter
26(1A) = Divide by Zero
27 (1B) = Long Word Overflow
28(1C) = Parameter Transfer Limit Overflow
2 9 (1 D) = ~ M e m o r y ~ R e a d ~ r e q u e s t ~ t o o ~ l o n g
30(1E) = Data Field Length Error
31(1F)= Message Function Request/Parameter NOT Processed
32(20)= Invalid Function Request

```

\section*{Control Byte Definitions:}
\begin{tabular}{lll} 
Bit \(7=\) & (1) Negative Numbers Allowed (0) Positive Numbers only \\
Bit \(6=\) & (1) Leading Zero's (0) No Leading Zero's \\
Bit \(5=\) & (1) Restricted Parameter (0) Unrestricted Parameter \\
Bit \(4=\) & (1) Parameter Defined (0) Undefined Parameter \\
Bit \(3=\) & Not Used (always 0) \\
Bit \(2=\) & (1) Floating Decimal Point (0) Fixed Decimal Point \\
Bit \(1=\) & (1) Binary Number (0) Decimal Number \\
Bit \(0=\) & (1) Integer (0) Non-Integer
\end{tabular}

Note: Applies to Parameters \& Parameter Values

Example of CRC-16 Calculation (in C):
```

\#define CRC16 0x8005
/* CRC-16 Generating Poly */
/* function returns the accumulated CRC value calculated for the Buffer */
/* this value can be transmitted or compared to a CRC value received */
/* "*data" is a pointer to the Buffer of data bytes to calculate the CRC for */
/* "len" is the number of data bytes to use for the calculation */
unsigned int do_crc(unsigned char *data, int len)
{
int i, j;
unsigned int accum = 0xFFFF;
unsigned int dat;
for(i = 0; i < len; ++i){
dat = *data++;
accum ^= (dat << 8);
j = 0;
while(j++< <) {
if(accum \& 0x8000)
accum ^= CRC16;
accum <<= 1;
}
}
return(accum);
}

```
/* byte \& bit counters */
/* CRC value accumulator */
/* holds data byte */
/* for each byte of data */
/* get data byte \& goto next */
/* put data into high byte */
/* clear bit counter */
/* for each bit */
/* if MSB set */
/* Modulus-2 math w/CRC 16 */
/* shift left 1 bit */
/* end for each bit */
/* end for each byte */
/* return the CRC value */
/* End do_crc function */

\section*{Troubleshooting/Diagnostics}

\author{
Device Tests \\ Hardware Tests \\ STD Signals Tests \\ DIG I/O Tests \\ Analog Input Tests \\ Serial Comm Tests \\ Device Status \\ Device Model \& Rev. \\ Troubleshooting \\ Parameter Load at Power-Up \\ EPROM
}

\section*{DEVICE TESTS}

The Device Tests screens allow you to test the memory, keypad and display of the CX-1102. You can also test the analog and digital I/O as well as the serial communications and calibrate the Analog Inputs.
Processor fault conditions and counters can be monitored. The software revision level, the model and the release date is also available. If any test fails, contact Contrex Technical Support at (763) 424-7800 or (800) 342-4411.

The CX-1102 Device Tests screens are:
- Hardware Tests
- STD Signal Tests
- DIG I/O Tests
- Analog Input Tests
- Serial Comm Test
- Device Status
- Device Model \& Rev

\section*{HARDWARE TESTS / MEMORY P1/3}

Use the Hardware Tests / Memory (page 1) to test the CX-1102's memory. Enter the number in Memory Test (CP-490) that corresponds to the section of memory that you want to test (see list below), then press the Enter key. To test all three sections, enter a " 4 ", then press the Enter key.
\[
\begin{aligned}
& 4=\text { Test ALL MEMORY } \\
& 3=\text { Test NVRAM } \\
& 2=\text { Test SRAM } \\
& 1=\text { Test ROM } \\
& 0=\text { Test Done }
\end{aligned}
\]

You can also refer to page 1 of the Memory Test's (CP-490) Help screen for the test list and the corresponding numeric codes. You can enter a test from the Help screen by scrolling the highlight bar to the test and pressing the Enter key.

When the test(s) are complete, the ROM Test (MP-94), SRAM Test (MP-95) and NVRAM Test ( MP-96) will update and indicate whether the test passed or failed. A message will flash in the message bar, as well. At the completion of the test, the value of Memory Test (CP-490) will automatically return to " 0 " (test done).

If any test fails, contact Contrex Technical Support at (763) 424-7800 or (800) 342-4411.

\section*{Memory Test (CP-490)}

To test the physical memory, either enter the number associated with the test (see list below) in Memory Test (CP-490) or go to the Help screen for Memory Test (CP-490) and choose the test. The test result will flash in the error and message status bar at the bottom of the screen and is also summarized in the Diagnostics/Device Tests Memory screen. The test results are also available through Monitor Parameters MP-94, MP-95, MP-96.
\[
\begin{aligned}
& 4=\text { Test ALL MEMORY } \\
& 3=\text { Test NVRAM } \\
& 2=\text { Test SRAM } \\
& 1=\text { Test ROM } \\
& 0=\text { Test Done }
\end{aligned}
\]

\section*{ROM Test (MP-94)}

ROM Test (MP-94) displays the result of the most recent ROM Test. ROM Test runs a checksum test on the CX-1102 program memory.
\[
\begin{aligned}
& 1=\text { Memory Test Fail } \\
& 0=\text { Memory Test Pass }
\end{aligned}
\]

SRAM Test (MP-95)
SRAM Test (MP-95) displays the result of the most recent SRAM Test. SRAM Test runs a read/write test on the scratch-pad memory.
\(1=\) Memory Test Fail
\(0=\) Memory Test Pass

NVRAM Test (MP-96)
Non Volatile RAM Test (MP-96) displays the result of the most recent Non Volatile RAM Test. The test runs both a \(\mathrm{read} / \mathrm{write}\) and a checksum test on the nonvolatile memory. The parameter values, the PLC program and the backups are all stored in this memory.
\[
\begin{aligned}
& 1=\text { Memory Test Fail } \\
& 0=\text { Memory Test Pass }
\end{aligned}
\]

\section*{HARDWARE TESTS / KEYPAD P2/3}

Use the Hardware Tests / Keypad (page 2) to test the keypad. Press the Enter key to start the test. The "START" text on the first line of screen will change to "EXIT" and you can begin testing the keys (with the exception of the Enter key). Press each key individually. Each of the keys should register a number in the Keypad Buffer line that corresponds with the numbers listed in Figure 8-1. A key has failed the test if its number does not correspond with the numbers that are listed in Figure 8-1. Press the Enter key to exit the test.

KeyPad Lockout (MP-103)
Keypad Lockout (MP-103) displays the Keypad Lockout status. The Keypad Lockout is active when "On" is displayed. When Keypad Lockout is active, Control Parameter values can not be changed, with the exception of the Control Parameters that are exempted by CP's 480-489. The Keypad Lockout is not active when "OFF" is displayed. When the Keypad Lockout is not active, any Control Parameter can be changed.


Figure 8-1 The Hardware Tests Corresponding Keypad Numbers

\section*{HARDWARE TESTS / VIDEO P3/3}

Use the Hardware Tests / Video (page 3) to test the screen display. Either enter a " 1 "in Video Test (CP-492) and press the Enter key to start the test. You can also use the increment scroll-up key, to start the test. The Display Diagnostic instructional screen will appear. Use the Page Up or Page Down keys to step through each test.

Each screen uses a different display combination to test the display hardware. The Contrast Test will automatically scroll through a range of contrast. Refrain from pressing a key during this test and allow the Contrast Test to complete its cycle. To exit the tests, and return to the Hardware Tests Display screen (page 3), press the Menu key.

Video Test (CP-492)
To start the Video Test, enter "1" in Video Test (CP-492). Then use the Page Up/Down keys to page through tests. Press the Menu key to exit the tests and return to the previous screen.

Video Mode (CP-474)
Video Mode (CP-474) determines how the LCD Screen Display will be displayed, per the list below:
\(3=\) Standard Video w/Border
\(2=\) Reverse Video
\(1=\) Standard Video (default)

Contrast Value (CP-475)
Contrast Value (CP-475) determines the contrast for the LCD Screen Display. The higher values darken the pixels and lower values lighten the pixels.
-NOTES-

\section*{STD SIGNAL TESTS}

The STD Signal Tests screens allow you to test the control output and the frequency inputs. The STD Signals Tests / Frequency Inputs screen (page 1) displays the Monitor Parameters that are associated with Unwind Frequency Input and the Wind Frequency Input. Input a known frequency and monitor the results here.

Use the STD Signals Tests / Control Output screen (page 2) to test the Control Output (SigU/SigW). The Control Output (SigU/SigW) is the CX-1102 output signal that is input to the drive. Temporarily disconnect the signal from the drive and use a scope or voltmeter to verify the Control Output (SigU/SigW) operation.

NOTE: The CX-1102 must be in "F-Stop" when you begin the diagnostics. To start the diagnostics, enter a " 1 " for Unwind, " 2 " for Wind or " 3 " for Both into Diagnostics En (CP-450) and press the Enter key.

Select the type of output test in Diag DAC Test (CP-453). The output test types are:
\(2=\) Immediate Output (an immediate step to a constant voltage)
1 = Continuous Ramp (a continuous ramp to plus and minus voltage - if bipolar mode)
\(0=\) Disabled (default)
In continuous ramp (1), you can set the ramp time.
Diag DAC Volts (CP-454) determines the voltage that is output for the "Immediate Output" test (2). This is also the peak voltage that the "Continuous Ramp" test (1) will reach. Diag DAC Bits (CP-455) also determines the voltage, but in terms of the DAC bit value. Diag DAC Test (CP-453) is limited to \(\pm\) UwndCOMax Volts and \(\pm\) WindCOMax Volts.

Diag Rmp Tm (CP-456) determines the slope of the ramp for the continuous ramp. This is the time in seconds that it takes to increase the voltage from 0 volts to the Diag DAC Volts (CP-454). In order to get every possible bit combination, the continuous ramp must ramp at a time of 32.767 seconds or more and the Diag DAC Volts (CP-454) must be equal to the UwndCOMax Volts (CP-281). In this scenario, UwndCOMax Volts (CP-281) must be 15 volts. The ramp should appear without discontinuity, even at low voltage.

The purpose of the UwndCO Offset/WindCO Offset is to cancel any electrical offsets that may be present on the Control Output (SigU/SigW) when the CX-1102 is calling for "0" volts on the output. Set Diagnostics En (CP-450) to " 1 " for Unwind, "2" for Wind or "3" for Both and Diag DAC Test (CP-453) to " 2 " (Immediate Output), then set the Diag DAC Volts (CP-454) to " 0 " and measure the voltage on pin J3-1 relative to J3-2 and pin J8-1 relative to J8-2. Enter the negative of the voltage reading in UwndCO Offset (CP-283) / WindCO Offset (CP-288) and then verify that the voltage on the Control Output (SigU/SigW) reads at or close to " 0 " volts.

\section*{STD SIGNAL TESTS / FREQUENCY INPUTS P1/2}

The STD Signals Tests / Frequency Inputs screen (page 1) displays the Monitor Parameters that are associated with Unwind Frequency Input and the Wind Frequency Input. Input a known frequency and monitor the results here

Uwnd Hz (MP-01)
Unwind Hertz (MP-01) displays the current frequency of the Unwind Encoder Input, in Hertz.
UwndEncRPM (MP-02)
Unwind Encoder RPM (MP-02) displays the current speed of the Unwind encoder in RPM relative to PPR Uwnd (CP-261).

UwndRollRPM (MP-03)
Unwind Roll RPM (MP-03) displays the rotational speed of the Unwind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

UwndCnts (MP-05)
Unwind Counts (MP-05) displays the encoder pulses from the Unwind station. They are converted to engineering units and displayed in UwndEstCtnt (MP-06). They will rollover, and begin again, as determined by UwndCtntRO (CP-368).

Uwnd Rot (MP-09)
Unwind Rotations (MP-09) displays a totalized rotational count of the Unwind Roll.
Wind Hz (MP-11)
Wind Hz (MP-11) displays the present frequency of the Wind Encoder Input, in Hertz.
WindEncRPM (MP-12)
Wind Encoder RPM (MP-12) displays the current speed of the Wind encoder in RPM relative to PPR Wind (CP266).

WindRollRPM (MP-13)
Wind Roll RPM (MP-13) displays the rotational speed of the Wind station axle. It may be different than the encoder speed, or the motor speed, due to gear ratios.

WindCnts (MP-15)
Wind Counts (MP-15) displays the encoder pulses from the Unwind station. They are converted to engineering units and displayed in WindEstCtnt (MP-16). They will rollover, and begin again, as determined by WindCtntRO (CP369).

Wind Rot (MP-19)
Wind Rotations (MP-09) displays a totalized rotational count of the Wind Roll.

\section*{STD SIGNAL TESTS / CONTROL OUTPUT P2/2}

The STD Signals Tests / Control Output screen (page 2) displays the Control and Monitor Parameters that are associated with the \(\operatorname{SigU}\) and SigW . Use this screen to perform a variety of tests that verify the operation of the SigU and SigW.
Diagnostics En (CP-450)
When Diagnostics Enable (CP-450) is set to " 1,2 or 3" (On or enabled), the digital inputs will not recognize their normal function and the digital outputs can be controlled by Diag DO (CP-452). In addition, the SigU/SigW Control Output can be tested. When you enter diagnostics, Diag DO (CP-452) is forced equal to the current DO \(7 . .0\) (MP102) so that there is no unexpected change in the outputs. Change the outputs through Diag DO (CP-452) while performing the diagnostics.
\[
\begin{aligned}
& 3=\text { Both } \\
& 2=\text { Wind Axis } \\
& 1=\text { Unwind Axis } \\
& 0=\text { Disabled (default) }
\end{aligned}
\]

Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
Diag DAC Test (CP-453)
Diagnostic DAC Test (CP-453) selects and enables the type of output control that is used for the diagnostic Control Output DAC test.
\(2=\) Immediate Output
\(1=\) Continuous Ramp
\(0=\) Disabled (default)

Diag DAC Volts (CP-454)
Diagnostic DAC Volts (CP-454) is the maximum voltage output (either positive or negative) at the Control Output DAC during a non zero diagnostic DAC test. The voltage corresponds to Diag DAC Bits (CP-455).
Diag DAC Bits (CP-455)
Diagnostic DAC Bits (CP-455) is the maximum value in bits written (either positive or negative) to the Control Output DAC during a non zero diagnostic DAC test (CP-453) and when Diag En (CP-450) is set to " 1 " (On or enabled). The value corresponds to Diag DAC Volts (CP-454).
Diag Rmp Tm (CP-456)
Diagnostic Ramp Time (CP-456) is the time, in seconds, from 0 volts to either positive or negative Diag DAC Volts (CP-454) during a Diagnostic DAC Test with a Ramp.
UwndCO Offset (CP-283)
Unwind Control Output Offset (CP-283) adjusts for small variations in the specifications of certain IC devices on this particular controller board. Usually a very small number, it serves to true up the 0 volts end point of the output voltage scale. It is preset at the factory, and should not need field adjustments.
WindCO Offset (CP-288)
Wind Control Output Offset (CP-288) adjusts for small variations in the specifications of certain IC devices on this particular controller board. Usually a very small number, it serves to true up the 0 volts endpoint of the output voltage scale. It is preset at the factory, and should not need field adjustments.

UwndCO Volts (MP-27)
Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is a combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).
WindCO Volts (MP-37)
Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is a combination of WindFFwd (MP-34) plus Wind Trim (MP-36).
System State (MP-50)
System State (MP-50) displays the present operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run" or the "Jog" operating state, the F-Stop, Unload and H-Stop inputs must be closed.
\[
\begin{array}{lll}
8=\text { Diagnostics } & 7=\text { Setup } & 6=\text { JOG } \\
5=\text { Unload } & 4=\text { Load } & 3=\text { Run } \\
2=\text { H-Stop } & 1=\text { F-Stop } &
\end{array}
\]

\section*{DIGITAL I/O TEST P1/1}

Use the Digital I/O Test to activate the digital outputs and monitor the digital inputs without the inputs being in actual operation. To enter the diagnostics state, enter a " 1 " in Diagnostics En (CP-450) or use the increment scroll-up key. Danger: The CX-1102 must be in "F-Stop" when you begin the diagnostics. The Diag DO (CP-452) will automatically set to the current state of the Digital Outputs. This will prevent any unexpected change on the outputs. Determine the binary value for Diag DO (CP-452) that places a " 1 " in the bits corresponding to the digital outputs that you want active and a " 0 " in the bits corresponding to the outputs that you want inactive. Danger: Changing the digital outputs may cause movement in your system. Enter this value into Diag DO (CP-452). Verify that the outputs are active (low). The Digital Inputs can be monitored in DI 7..0 (MP-102) and DI \(15 . .8\) (MP-101). Short the corresponding pin common of the inputs to make the output active. Monitor these MP's to verify that the active pins are recognized (a " 1 " appears in the corresponding bit).
Diagnostics En (CP-450)
When Diagnostics Enable (CP-450) is set to " 1,2 or 3" (On or enabled), the digital inputs will not recognize their normal function and the digital outputs can be controlled by Diag DO (CP-452). In addition, the SigU/SigW Control Output can be tested. When you enter diagnostics, Diag DO (CP-452) is forced equal to the current DO \(7 . .0\) (MP102) so that there is no unexpected change in the outputs. Change the outputs through Diag DO (CP-452) while performing the diagnostics.
Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
\[
\begin{aligned}
& 3=\text { Both } \\
& 2=\text { Wind Axis } \\
& 1=\text { Unwind Axis } \\
& 0=\text { Disabled (default) }
\end{aligned}
\]

\section*{Diag DO Shift (CP-451)}

When in Diagnostics State, Diagnostics Digital Out Shift (CP-451) may be used to activate the digital outputs one at a time.
Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
\begin{tabular}{lr}
\(8=\) Spare & Activated \\
\(7=\) WbBrk & Activated \\
\(6=\) Dncr & Activated \\
\(5=\) WRIFl & Activated \\
\(4=\) WErr & Activated \\
\(3=\) UErr & Activated \\
\(2=\) WdEn & Activated \\
\(1=\) UwdEn & Activated \\
\(0=\) Off (default) &
\end{tabular}

Diag DO (CP-452)
Diagnostic Digital Out (CP-452) controls the digital outputs when Diagnostics En (CP-450) is set to " 1 " (On or enabled) during diagnostics. It is an 8 Bit Binary number with 1 bit per output. If the bit is a " 1 ", then the corresponding output is pulled "low". When you enter diagnostics, Diag DO (CP-452) is forced equal to the current DO 7..0 (MP-102) so that there is no unexpected change in the outputs. Change the outputs through Diag DO (CP452) while performing the diagnostics.

Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
DI 7..0 (MP-100)
Digital Input 7..0 (MP-100) displays the value of the "J6" digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). Refer to Appendices: Appendix \(C\) for the DI 7..0 (MP-100) bit map list.
DI 15..8 (MP-101)
Digital Input \(15 . .8\) (MP-101) displays the value of the " J 7 " digital inputs. A ' 1 ' in the bit location indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). These eight inputs can be set up in the PLC Programming screen to generate a One-Shot -Pulse on a high-to-low transition. Refer to Appendices: Appendix \(C\) for the DI \(15 . .8\) (MP-101) bit map list.

\section*{DIGITAL I/O TEST P1/1 continued}

DO 7..0 (MP-102)
Digital Output \(7 . .0\) (MP-102) displays the value of the "J2" digital outputs. A ' 1 ' in the bit location indicates an active "low voltage" condition on the corresponding open collector output (which would sink DC current). Refer to Appendices: Appendix \(C\) for the DO \(7 . .0\) (MP-102) bit map list.

\section*{System State (MP-50)}

System State (MP-50) displays the present operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run" or the "Jog" operating state, the F-Stop, Unload and H-Stop inputs must be closed.
\begin{tabular}{lll}
\(8=\) Diagnostics & \(7=\) Setup & \(6=\) JOG \\
\(5=\) Unload & \(4=\) Load & \(3=\) Run \\
\(2=\) H-Stop & \(1=\) F-Stop &
\end{tabular}

\section*{DANGER}

The CX-1102 should not be in "Run" or "Jog" when you begin the diagnostics.

Changing the digital outputs may cause movement in your system.
-NOTES-

\section*{ANALOG INPUT TESTS}

The Auxiliary Analog tests screens display the input screen (page 1) and the calibration screen (page 2). The Auxiliary Analog Input screen displays the Monitor Parameters that monitor the results of inputing a voltage. Use the Aux Analog Calibration screen (page 2) to calibrate the Auxiliary Analog In; AI1 and AI2. These boards are calibrated at the factory and are adequate for most applications. However, you may need to recalibrate if your application demands more accuracy in a specific range or if you need to calibrate directly to EU/Tm with a known signal level on the inputs. The following sections will explain the calibration for Analog Input 1, Analog Input 2.

Dancer Input:
1. Connect the Analog voltage to the Dancer Input (JA pins 2,4). Connect a voltmeter between pins 2 and 4.
2. Set Analog Cal Sel (CP-461) to "AI1" (1) to Select AI1 for calibration.
3. Set Analog Cal Ref (CP-462) to "A" (1) to select point A.

NOTE: The old calibration data will be overwritten.
4. Set Analog Cal EN (CP-460) to "On" (1) to start calibration.
5. Adjust the analog voltage until the meter reads the voltage that you want set for point A. This is generally your smallest (or negative) voltage point.
6. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
7. Set Analog Cal Ref (CP-462) to "B" (2) to select point B.
8. Adjust the analog voltage until the meter reads the voltage that you want use for point B. This is generally your largest (or positive) voltage point.
9. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
10. Set Analog Cal EN (CP-460) to "Off" (0) to disable further calibration.

Ext Line Speed:
1. Connect the Analog voltage to the External Line Speed Input (JA pins 3,4). Connect a voltmeter between pins 3 and 4 .
2. Set Analog Cal Sel (CP-461) to "AI2" (2) to Select AI2 for calibration.
3. Set Analog Cal Ref (CP-462) to "A" (1) to select point A.

NOTE: The old calibration data will be overwritten.
4. Set Analog Cal EN (CP-460) to "On" (1) to start calibration.
5. Adjust the analog voltage until the meter reads the voltage that you want set for point A. This is generally your smallest (or negative) voltage point.
6. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
7. Set Analog Cal Ref (CP-462) to "B" (2) to select point B.
8. Adjust the analog voltage until the meter reads the voltage that you want use for point B. This is generally your largest (or positive) voltage point.
9. Enter the exact voltage measured by the meter into AnalogRef Val (CP-463).
12. Set Analog Cal EN (CP-460) to "Off" (0) to disable further calibration.

\section*{ANALOG INPUT TESTS P1/2}

The Auxiliary Analog Input screens display the Monitor Parameters that monitor the results of inputting a voltage.

Dancer Bits (MP-80)
Dancer Bits (MP-80) displays the ADC receiving the analog Dancer signal.
Dancer Volts (MP-81)
Dancer Volts (MP-81) displays the analog Dancer Signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

\section*{Dancer Ctnt (MP-82)}

Dancer Content (MP-82) displays the estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

Ext LS Bits (MP-86)
External Line Speed Bits (MP-86) displays the ADC receiving the analog Line Speed signal.
Ext LS Volts (MP-87)
External Line Speed Volts (MP-87) displays the analog Line Speed signal. It operates over the range of 0 to \(+/-5\) VDC. Reverse direction can be achieved via negative signal in some configurations, or via a positive signal plus a wire terminal reversing input switch.

Ext Line Spd (MP-88)
External Line Speed (MP-88) displays the Ext LS Volts (MP-87) signal converted into web line speed units. This display actively monitors the input signal even if the system is presently using another source for the Line Speed, or even if the value is later limited for various reasons.

\section*{ANALOG INPUT TESTS / CALIBRATION P2/2}

\section*{Analog Cal En (CP-460)}

Analog Calibration Enable (CP-456) enables the calibration process for the auxiliary analog board. When Analog Cal En (CP-460) is set to " 1 " (On), the signal that is selected in Analog Cal Sel (CP-461) will be calibrated.
\(1=\) Enabled
\(0=\) Disabled (default)

\section*{Analog Cal Sel (CP-461)}

Analog Calibration Select (CP-461) selects the signal (AI1, AI2) on the auxiliary analog board for calibration.
\[
\begin{aligned}
& 2=\text { Analog In } 2 \\
& 1=\text { Analog In } 1 \text { (default) }
\end{aligned}
\]

\section*{Analog Cal Ref (CP-462)}

Analog Calibration Reference (CP-462) determines which of the two calibration reference points (see list below) are to be calibrated.
\[
\begin{aligned}
& 2=\text { point } \mathrm{B} \\
& 1=\text { point } \mathrm{A} \text { (default) }
\end{aligned}
\]

\section*{Analog Ref Val (CP-463)}

Analog Reference Value (CP-463) is the value of measured data for the signal at the specified reference point (Ana\(\log \mathrm{Cal}\) Ref, CP-462). Use a voltmeter for voltage mode operation to measure the voltage on the analog signal selected for calibration at the specified reference point. Enter the measured value in the Analog Ref Val (CP-463).

Dancer Bits (MP-80)
Dancer Bits (MP-80) displays the ADC receiving the analog Dancer signal.

\section*{Dancer Volts (MP-81)}

Dancer Volts (MP-81) displays the analog Dancer Signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

\section*{Ext LS Bits (MP-86)}

External Line Speed Bits (MP-86) displays the ADC receiving the analog Line Speed signal.
Ext LS Volts (MP-87)
External Line Speed Volts (MP-87) displays the analog Line Speed signal. It operates over the range of 0 to + 5VDC. Reverse direction can be achieved via negative signal in some configurations, or via a positive signal plus a wire terminal reversing input switch.

AnlgCal Ref A (MP-168)
Analog Calibration Reference A (MP-168) displays the Analog Ref Val (CP-463) for the signal (AI1, AI2), which was selected in Analog Cal Sel (CP-461) and which was stored during the calibration of point A.

AnlgCal Ref B (MP-169)
Analog Calibration Reference B (MP-169) displays the AnalogRef Val (CP-463) for the signal (AI1, AI2), which was selected in Analog Cal Sel (CP-461) and which was stored during the calibration of point B.

\section*{SERIAL COMMUNICATIONS TEST P1/2}

Use the Serial Communications Test screen to set up the Baud Rate, Frame Format and Record Format that will be used by the host computer. You can send a byte out and receive a byte on the RS- 485 port. These are decimal numbers. If you want to send ASCII, you must use the decimal equivalent. Likewise, if an ASCII character is received, it will be displayed as the decimal equivalent (e.g., 'A' = 65). Use the SerCom Errs (MP-91) "help" screen to decipher any errors.

Device Address (CP-470)
Device Address (CP-470) assigns a serial communications address to the CX-1102. This number should be different from any other units that are on the serial link.

Baud Rate (CP-471)
The Baud Rate (CP-471) determines the serial communications data transfer rate (see list below) in bits/sec. With a 10 bit frame length, the number of frame/sec would be \(1 / 10\) the Baud Rate.
```

1=300 bps = 300 Baud 2 = 600 bps = 600 Baud }\quad3=1200 bps = 1200 Baud

```

```

7=19200 bps = 19.2 Kbaud

```

Frame Format (CP-472)
Frame Format (CP-472) determines the parity, the number of data bits, and the number of stop bits for the serial communications.
\[
1=\mathrm{N}, 8,1=\text { No Parity, } 8 \text { data bits, } 1 \text { stop bit (10 bit frame-ASCII or Binary) }
\]
\(2=\mathrm{E}, 7,1=\) Even Parity, 7 data bits, 1 stop bit (10 bit frame-ASCII only)
Record Format (CP-469)
Record Format (CP-469) determines which type of data format (see list below) will be used for the serial communication.
\[
3=\text { ASCII } 2 \quad 2=\mathrm{ASCII} \quad 1=\text { BINARY }
\]

CRC Enable (CP-468)
If CRC Enable (CP-468) is set to "ON" (1), you must append a CRC value to all serial communications messages that are received by the CX-1102 (See Serial Communications: Using Serial Communications). The CX-1102 checks the CRC value against the the message contents (excluding the "STX"), then calculates a CRC value and appends it to all serial communications responses. If CRC Enable (CP-468) is set to "OFF" ( 0 ), the CX-1102 will ignore any CRC value that is appended to a message and will not append a CRC value to any serial communications responses.
\[
1=\text { On (Enabled) } \quad 0=0 \text { Off (Disabled) }
\]

\section*{SerCom Char Out (CP-473)}

When a new value is entered in SerCom Char Out (CP-473), it is transmitted out the RS-485 serial port at the Baud Rate (CP-471) and the Frame Format (CP-472). SerCom Char Out (CP-473) is a decimal number.

\section*{SerCom Char In (MP-90)}

Serial Communications Character In (MP-90) displays the value of the last byte that was received by the Serial Communications port. SerCom Char In (MP-90) is displayed in a decimal format. SerCom Char In (MP-90) is used primarily for troubleshooting.

\section*{SerCom Errs (MP-91)}

Serial Communications Errors (MP-91) displays all serial communications errors that occurred during the most recent transmission.

\section*{SERIAL COMM TEST / MESSAGE DISPLAY P2/2}

Receive Buffer:
000000000000
000000000000
000000000000
Transmit Buffer:
000000000000
000000000000
000000000000
SerCom Errs (MP-91)
Serial Communications Errors (MP-91) displays all serial communications errors that occurred during the most recent transmission.

\section*{DEVICE STATUS P1/2}

The Device Status screen displays the microprocessor related faults. Norm Pwr Ups (MP-154) indicates how many times power has been applied to the CX-1102 since the last "Clear-7" power-up. The Low Pwr Cntr (MP-155) shows the number of times the CX-1102 experienced low power before shutting down. If this number is greater than Norm Pwr Ups (MP-154), it can indicate that the line-power input has dipped below about 100 volts AC. However, this could also indicate that a "Clear-7" power-up was executed and the Low Pwr had not been reset. Therefore, it is important to reset the Low Pwr Cntr (MP-155) after a "Clear-7" power-up, to keep the numbers accurate. Use Clr Fault Cntrs (CP-491) to reset the Low Pwr Cntr (MP-155).

Last Reset (MP-150)
Last Reset (MP-150) displays a " 1 " in a bit to indicate the reason for the last reset. Refer to Appendices: Appendix C for the Last Reset (MP-150) bit map list. The Help screen for Last Reset (MP-150) also contains a bit map list.

Misc Intrpt (MP-151)
Miscellaneous Interrupts (MP-151) displays a " 1 " in a bit to indicate which of the various system interrupts may have caused the last reset. Refer to Appendices: Appendix C for the Misc Intrpt (MP-151) bit map list. The Help screen for Misc Intrpt (MP-151) also contains a bit map list.

Device Alms (MP-152)
Device Alarms (MP-152) displays the status of microprocessor or other hardware related alarms. Notification of a bad block selection is also included. Refer to Appendices: Appendix \(C\) for the Device Alarms (MP-152) bit map list. The Help screen for Device Alarms (MP-152) also contains a bit map list.

Norm Pwr Ups (MP-154)
Normal Power Ups (MP-154) displays the number of normal power-ups since the most recent "Clear-7" power-up . This value is reset only by a "Clear-7" power-up. Norm Pwr Ups (MP-154) is used primarily for troubleshooting.

Low Pwr Cntr (MP-155)
Low Power Counter (MP-155) displays the number of low power detections, including normal "Power Downs". You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). Low Pwr Cntr (MP-155) is used primarily for troubleshooting.

Mem Err Cntr (MP-156)
Memory Error Counter (MP-156) displays the number of memory test failures that occurred during "Power Up". You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). Mem Err Cntr (MP-156) is used primarily for troubleshooting.

WatchDogCntr (MP-157)
Watch Dog Counter (MP-157) displays the number of watch dog resets that were caused by Watchdog time-out. WatchDogCntr (MP-157) is used primarily for in troubleshooting. You can reset this numeric value, but only in ' Clr Fault Cntrs' (CP-491).

\section*{Clr Fault Cntrs (CP-491)}

To reset all the system-fault counters except Norm Pwr Ups (MP-154), enter a " 1 " in Clear Fault Counters (CP-491). The error and message status bar at the bottom of the screen will flash "Flts Cleared" and the value will return to " 0 ".

\section*{DEVICE STATUS P2/2}

Last Reset (MP-150)
Last Reset (MP-150) displays a "1" in a bit to indicate the reason for the last reset. Refer to Appendices: Appendix \(C\) for the Last Reset (MP-150) bit map list. The Help screen for Last Reset (MP-150) also contains a bit map list.

Misc Intrpt (MP-151)
Miscellaneous Interrupts (MP-151) displays a " 1 " in a bit to indicate which of the various system interrupts may have caused the last reset. Refer to Appendices: Appendix C for the Misc Intrpt (MP-151) bit map list. The Help screen for Misc Intrpt (MP-151) also contains a bit map list.

\section*{MiscIntrptCntr (MP-158)}

Miscellaneous Interrupt Counter (MP-158) displays the number of miscellaneous interrupts that occurred as the result of bus errors, address errors, divide-by-0 errors, unexecuted instruction errors, general exceptions, and unexecuted and spurious interrupts. You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). MiscIntrptCntr (MP-158) is used primarily for troubleshooting.

\section*{PC at Intrpt (MP-153)}

Program Counter at Interrupt (MP-153) shows were the last interrupt of the microprocessor program counter occurred. If the CX-1102 repeatedly displays the "REST FAULT" error box, then record the "PC @Intrpt" value as well as the line just above it (which indicates the cause of the reset), before you press the clear key to continue. The program counter at interrupt is stored in the PC at Intrpt (MP-153) Monitor Parameter for review. A value of " 2560 " is normal.

\section*{Clr Fault Cntrs (CP-491)}

To reset all the system-fault counters except Norm Pwr Ups (MP-154), enter a "1" in Clear Fault Counters (CP-491). The error and message status bar at the bottom of the screen will flash "Flts Cleared" and the value will return to " 0 ".

\section*{DEVICE MODEL \& REVISION P1/1}

The Device Model and Revision screen displays the model of the CX-1102, the software number, the revision level of the software and the date that this software was released. The Contrex copyright is also displayed on this screen. If you call technical support for assistance, you may be asked for this information.

Model \# (MP-97)
Model \# (MP-97) displays the model number for this CX-1102. This model number is unique to the CX-1102 series of controllers.

\section*{REVISION (MP-99)}

REVISION (MP-99) is the revision level of the software for this individual CX-1102.

\section*{RELEASE (MP-98)}

RELEASE (MP-98) is the date that the software for this individual CX-1102 was released. The numeric, six digit format is: year, month, day.
—NOTES-

\section*{TROUBLESHOOTING}

If you need to verify the integrity of the CX-1102 independently, refer to the Troubleshooting/Diagnostics: Device Tests section. If the information in this section does not solve your problem, consult technical support:

\section*{PARAMETER LOAD AT POWER-UP}

This section contains instructions to restore either the default Control Parameter values or the back-up Control Parameter values. The procedures are:

\section*{Clear-7}

Clear-8
Clear-9

\section*{CLEAR-7}

Use the Clear-7 procedure to restore the Control Parameter's factory default settings, with the exception of these three Control Parameters: Contrast Value (CP-475), UwndCO Offset (CP-283), WindCO Offset (CP288) and Serial Number (CP-495). The back-up settings for the Control Parameters are not altered.

NOTE: Clear-7 also restores the PLC to the factory default. The back-up for the PLC is not altered. The fault counters are not reset.
Norm Pwr Ups (MP-154) is reset to " 1 " (normal power-up) or " 0 " (if CPU reset occurs during power-up).
EstMaxLnSpd (MP-43) is reset to "0".
The Code Select line and the Large Number units in the "Status" screen are cleared.
To do the Clear-7 Procedure:
Press the Clear key and the " 7 " key, then continue to press the keys while you apply power to the CX-1102.

\section*{CLEAR-8}

Use the Clear-8 procedure to restore the Control Parameters to the back-up settings, with the exception of these two Control Parameters: UwndCO Offset (CP-283), WindCO Offset (CP-288) and Serial Number (CP495). This procedure uses the back-up settings which you have entered; the back-up settings are not reset to the factory default.

NOTE: Clear-8 also restores the PLC to the back-up settings which you have entered; the PLC back-up settings are not reset to the factory default.
The fault counters are not reset.

To do the Clear-8 Procedure:
Press the Clear key and the " 8 " key, then continue to press the keys while you apply power to the CX-1102.

\section*{CLEAR-9}

Use the Clear-9 procedure to restore the Control Parameter's factory default settings. The back-up settings for the Control Parameters are also restored to the factory default.

NOTE: Clear-9 restores the PLC to the factory default. The back-up for the PLC is also restored to the factory default.

The fault counters are reset to " 0 ".
Norm Pwr Ups (MP-154) is reset to " 1 " (normal power-up) or " 0 " (if CPU reset occurs during power-up).
EstMaxLnSpd (MP-43) is reset to "0".
The Code Select line and the Large Number units in the "Status" screen are cleared.
To do the Clear-9 Procedure:
Press the Clear key and the " 9 " key, then continue to press the keys while you apply power to the CX-1102.


Figure 8-6 Parameter Load at P ower-up Corresponding Keypad N umbers

\section*{EEPROM CHIP REPLACEMENT}

The EEPROM (Electrical Erasable Programmable Read Only Memory) chip, which is also referred to as the "Flash Memory", is the software for the CX-1102.

To replace the EEPROM chip:
- Make a record of your current Control Parameter values; the replacement chip contains default values that will replace your current values when you perform the "Clear 9" step.
- Turn off the power to the CX-1102 and remove the back panel.
- Pull out the CPU board and locate the 44 pin PSOP Surface Mount Socket that houses the EEPROM chip.
- Ground yourself - Static electricity can damage the EEPROM chip.
- The PSOP Socket has a positive locking lid design. The lock is attached to the left lid and slides back and forth in a direction parallel to the hinge pins.

- To open them, first slide the lock sideways (approximately 1 mm ) to the unlocked position.

- Both lids are now free to be opened by rotating them on their respective hinges.

- Place the SOP component into the socket.

- The lids must be closed simultaneously to assure proper seating of the SOP component. If this is not observed, the component will shift off center in the socket resulting in an unsatisfatory electrical connection. Now, while maintaining a downward pressure on the lock, slide it sideways to its locked position.
- Replace the CPU board and the back panel.
- Press the "Clear" key and the " 9 " key, then continue to press the keys while you apply power to the CX-1102.
- The "Clear 9" procedure restores the factory default settings and automatically performs the Power Up diagnostic routines.
- Reenter the values for your Control Parameters.
—NOTES-

\section*{Appendices}

Appendix A-CX-1102 Specifications
Appendix B - Formulas
Appendix C - Parameter Summary - Numeric Quick Reference
Appendix D - Control Parameter Reference
Appendix E - Monitor Parameter Reference
Appendix F - Control Parameter Screen Locator
Appendix G - Monitor Parameter Screen Locator
Appendix H - Error Code Definitions
Appendix I - Serial Communications Error Code Definitions
Appendix J - PLC Default Program Logic
Appendix K - PLC Program Commands
Appendix L - PLC Program Operands
Appendix M - Wiring Diagram Examples
Appendix N-Fax Cover Sheet
Appendix O-Revision Log

\title{
APPENDIX A: CX-1102 SPECIFICATIONS
}
\begin{tabular}{|c|c|}
\hline & Electrical \\
\hline \multirow[t]{3}{*}{AC Power Input:} & \begin{tabular}{l}
115 VAC \(+15 \%-10 \%\) 48 to 62 Hertz \\
0.250 Amps Maximum \\
30 Watts Maximum
\end{tabular} \\
\hline & or (switch selectable) \\
\hline & \begin{tabular}{l}
\[
230 \text { VAC }+15 \%-10 \%
\] \\
48 to 62 Hertz \\
0.125 Amps Maximum \\
30 Watts Maximum
\end{tabular} \\
\hline \multirow[t]{2}{*}{Frequency Inputs(2):} & \begin{tabular}{l}
Differential Mode (26LS32): \\
5 to 15 VDC Operating Voltage \\
200 mV Differential Input Voltage \\
100 mV Hysteresis Typical \\
\(2.0 \mathrm{kOhm}, 1 / 8 \mathrm{~W}\) to 5 V Internal Pullup \\
0 to 180 kHertz Operating Frequency \\
Quadrature \\
Optically Isolated (Dig_Com)
\end{tabular} \\
\hline & \begin{tabular}{l}
Single-Ended Mode: \\
Current Sinking \\
5 to 15 VDC Operating Voltage \\
2.5 V Switching Threshold \\
100 mV Hysteresis Typical \\
\(2.0 \mathrm{kOhm}, 1 / 8 \mathrm{~W}\) to 5 V Internal Pullup \\
0 to 180 kHertz Operating Frequency \\
Quadrature \\
Optically Isolated (Dig_Com)
\end{tabular} \\
\hline Digital Inputs(16): & \begin{tabular}{l}
Single-Ended (74HC14) \\
Current Sinking \\
5 to 24 VDC Operating Voltage \\
3.15 V Rising Edge Threshold Maximum \\
0.90 V Falling Edge Threshold Minimum \\
1.0 V Hysteresis Typical \\
\(10.0 \mathrm{kOhm}, 1 / 8 \mathrm{~W}\) to 5 V Internal Pullup \\
1 mSec Response Time (DI0 - DI7) \\
2 mSec Response Time (DI8 - DI15) \\
Optically Isolated (Dig_Com)
\end{tabular} \\
\hline Digital Outputs(8): & \begin{tabular}{l}
NPN Darlington (ULN2003) \\
Current Sinking \\
50 VDC Maximum Operating Voltage \\
1.0 V Saturation at 200 mA Typical \\
0.6 V Saturation at 1 mA Typical \\
200 mA Continuous/Channel \\
500 mA Peak/Channel (50\% Duty Cycle) \\
750 mA Continuous Total All Channels \\
Internal Freewheeling Diodes \\
2 mSec Update Rate \\
Optically Isolated (Dig_Com) \\
(Continued)
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix A: CX-1102 Specifications (continued)}
\begin{tabular}{|c|c|}
\hline Control Output to Drive (2): & \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) Bipolar Analog Zero/Span Software Calibration 16 Bits Bipolar Resolution (15+Sign) 18 mA Maximum Drive Current Optically Isolated (ComU / ComW) \\
\hline Aux. Power Output: & \begin{tabular}{l}
\[
+5 \mathrm{VDC} \pm 5 \%
\] \\
150 mA Maximum \\
Optically Isolated (Dig_Com)
\end{tabular} \\
\hline Serial Communications: & \begin{tabular}{l}
RS485 Compatible \\
5 VDC Differential Operation 300 to 19200 Baud Rate Selectable Character Format Half Duplex Optically Isolated (Dig_Com)
\end{tabular} \\
\hline Analog In (2): & \begin{tabular}{l}
2 Input Channels \\
\(\pm 5\) VDC \\
80 kOhm Input Resistance \\
14 Bits Resolution \\
\(\pm 0.1 \%\) Drift Error Typical ( \(50^{\circ} \mathrm{C}\) Range) \\
Zero Monotonic Error \\
Software Calibration \\
NOVRAM Calibration Storage \\
Optically Isolated (Dig_Com)
\end{tabular} \\
\hline & Physical \\
\hline Construction: & \begin{tabular}{l}
NEMA4, 4X, 12, 13 IP65 Compatible Frontpanel 14 Line by 21 Character LCD Display \\
Sealed Membrane Keypad \\
Polycarbonate ABS Front Bezel \\
Paint over Zync Plate CRS Enclosure
\end{tabular} \\
\hline Overall Dimensions: & 19.6 cm (7.7 in) Bezel Height 10.2 cm (4.0 in) Bezel Width 17.8 cm (7.0 in) Total Depth \\
\hline Panel Dimensions: & 18.41 cm (7.25 in) Panel Height Cutout 9.27 cm (3.65 in) Panel Width Cutout 16.30 cm (6.30 in) Panel Inside Depth \\
\hline Weight: & 2.3 kilograms (5.1 Pounds) Environmental \\
\hline
\end{tabular}

\section*{Appendix A: CX-1102 Specifications (continued)}
\begin{tabular}{|c|c|}
\hline Operating Temperature: & \(0^{\circ}\) to \(55^{\circ} \mathrm{C}\left(32^{\circ}\right.\) to \(\left.131^{\circ} \mathrm{F}\right)\) Int. Enclosure \(0^{\circ}\) to \(40^{\circ} \mathrm{C}\left(32^{\circ}\right.\) to \(\left.104^{\circ} \mathrm{F}\right)\) Ext. Enclosure \\
\hline Storage Temperature: & \(-25^{\circ}\) to \(70^{\circ} \mathrm{C}\left(-13^{\circ}\right.\) to \(\left.158^{\circ} \mathrm{F}\right)\) \\
\hline Environment: & The CX-1102 shall be installed in a pollution degree 2 macro-environment. \\
\hline Relative Humidity: & 0 to \(95 \%\) Non-condensing \\
\hline Altitude: & To 3,300 Feet (1000 Meters) \\
\hline & Performance \\
\hline Setpoint Resolution: & 6 Digits in Engineering Units \\
\hline Speed Regulation: & \(0.01 \%\) Error in Lead Modes ( \(>10 \mathrm{~Hz}\) ) \(0.00 \%\) Error in Follower Modes ( \(>10 \mathrm{~Hz}\) ) \\
\hline Accel/Decel Ramps: & \begin{tabular}{l}
Settable in Time or Rate \\
0.1 to 3600.0 Seconds \\
0.001 to 999,999 EUs/T/Second \\
Separate for Run, Direct, Jog, H-Stop
\end{tabular} \\
\hline Limits: & Maximum Speed Minimum Speed Trim Authority Integral Limit \\
\hline Alarms: & \begin{tabular}{l}
Zero Speed \\
Maximum Feedback \\
Maximum Accel/Decel \\
No Response \\
Programmable Custom Alms (6)
\end{tabular} \\
\hline PLC: & 64 Program Instructions Total \\
\hline
\end{tabular}

\section*{Appendix A: CX-1102 Specifications (continued)}
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
9 Instruction Types \\
8 Digital Inputs (DI8-DI15) \\
8 Digital Outputs (DO0-DO7) \\
4 Timers \\
4 Counters \\
4 Latches
\end{tabular} \\
\hline Setpoint Scaling Modes: & \begin{tabular}{l}
Direct \\
Line Speed \\
Follower
\end{tabular} \\
\hline Digital Inputs: & \begin{tabular}{l}
F-Stop \\
Unload \\
H-Stop \\
Load \\
Run \\
Spare \\
Keypad Lockout \\
Setup \\
Unwind Jog Forward Unwind Jog Reverse Wind Jog Forward Wind Jog Reverse Unwind Under Wrap Wind Under Wrap Line Speed Reverse Web Reset
\end{tabular} \\
\hline Digital Outputs: & Unwind Enable Wind Enable Unwind Error Wind Error Wind Roll Full Dancer Web Break Spare \\
\hline Control Loop Formats: & Velocity Open Loop \\
\hline Closed Loop Algorithm: & \begin{tabular}{l}
PID + FF \\
Adaptive or Self-Adjust Feedforward
\end{tabular} \\
\hline Control Loop Response: & 2 mSec Speed Loop and PLC Functions \\
\hline Block Parameters: & 8 Switch Selectable Parameter Blocks \\
\hline
\end{tabular}

\section*{Appendix A: CX-1102 Specifications (continued)}

\author{
Permissible Setpoint Mode Switching 16 Parameters per Block \\ Full Control Parameter Selection
}

Device Configuration:
Parameter Load and Store
PLC Program Load and Store
Status Screen Configuration
Serial Communications Format
Selectable Keypad Lockout
Normal/Reverse Video
Video Contrast Adjust
Annunciator Enable
Standard Alarm Mask
\begin{tabular}{|c|c|}
\hline Diagnostics: & \begin{tabular}{l}
Memory Test \\
Keypad Test \\
Video Test \\
I/O Signal Tests \\
Serial Communications Test \\
Annunciator Test
\end{tabular} \\
\hline Help Screens: & Help Screen for all Parameters Displays Minimum, Maximum and Default Summary of Parameter Operation Retrieve Default or Backup Values Decode/Select of Bit Mapped Parameters \\
\hline
\end{tabular}

\section*{APPENDIX B: FORMULAS}

The equations used to scale the Gear Reduction are given by:
This assumes the encoder is mounted on the motor shaft (prefered).
\[
\text { Gear Reduction }\left(\mathrm{CP}-260 \text { or CP-265) }=\frac{\text { Encoder rotations }}{\text { Roll rotations }}\right.
\]

\[
\text { Gear Reduction }=\frac{10}{2}=5 \quad(\mathrm{CP}-260 \text { or CP-265) }
\]

\[
\text { Gear Reduction }=\begin{gathered}
5 \\
1
\end{gathered}-\frac{240}{80}=15
\]
(CP-260 or CP-265)

\section*{Appendix B: Formulas (continued)}

\section*{The equations used for Dancer Storage/Content Minimum are given by:}

Dancer Storage should be greater than or equal to \(1 / 2\) second at the desired maximum line speed.
Dancer Storage Check Example:
Maximum Line Speed \(=300 \mathrm{ft} / \mathrm{min}\)
Dancer Content \(>=300 \mathrm{ft} / \mathrm{min} \times 1 \mathrm{~min} / 60 \mathrm{sec} \times 0.5 \mathrm{sec}=2.5 \mathrm{ft}\)
If the value for DncrCtntFull (CP-272) is greater than or equal to 2.5 feet then the dancer has the recommended storage content to allow a Maximum Line Speed of \(300 \mathrm{ft} / \mathrm{min}\).

\section*{The equations used for Maximum Roll RPM are given by:}

This assumes the encoder is mounted on the motor shaft (prefered).
written with parameter text:
\[
\text { Maximum Roll RPM }=\begin{gathered}
\text { Maximum Motor RPM }^{1} \\
\text { Gear Reduction }
\end{gathered}
\]
\({ }^{1}\) Maximum Motor RPM is the RPM of the motor shaft (encoder) when the motor drive command voltage is at the value that was entered for the UwndCOMaxVolts (CP-281) or WindCOMaxVolts (CP-286).

2 Gear Reduction is the value entered into either UwndGearRden (CP-260) or WindGearRdcn (CP-265).
Example:
Max Motor RPM \(=1750\) RPM \(\quad\) Gear Reduction \(=15\)
Maximum Roll RPM \(=--\cdots----1750=16.67(\mathrm{CP}-329\) or CP-339)
-NOTES-

\title{
APPENDIX C: PARAMETER SUMMARY NUMERIC QUICK REFERENCE
}

\section*{MP-01 Uwnd Hz}

Unwind Hertz (MP-01) displays the current frequency of the Unwind Encoder Input, in Hertz.
Minimum Value: -180000 Maximum Value: 180000
Units: Hertz

\section*{MP-02 UwndEncRPM}

Unwind Encoder RPM (MP-02) displays the current speed of the Unwind encoder in RPM, based on PPR Uwnd (CP-261).

Minimum Value: -99999.9 Maximum Value: 99999.9
Units: RPM

\section*{MP-03 UwndRollRPM}

Unwind Roll RPM (MP-03) displays the UwndGearRden (CP-260) applied to UwndEncRPM (MP-02) to determine the Unwind Roll RPM value.

Minimum Value: -99999.9
Maximum Value: 99999.9
Units: Roll RPM

\section*{MP-05 UwndCnts}

Unwind Counts (MP-05) displays the totalized encoder pulses from the Unwind station. They are converted to engineering units and displayed in UwndEstCtnt (MP-06). They will rollover, and begin again, as determined by UwndCtntRO (CP-368).

Minimum Value: -2000000000
Maximum Value: 2000000000
Units: Counts

\section*{MP-06 UwndEstCtnt}

Unwind Estimated Content (MP-06) is calculated from approximate web travel, and decrements during forward motion. It can be forced to the UwndCtntPrst (CP-366) by PLC action. While decrementing, it will ultimately rollover over at zero. At rollover, it sets a PLC bit, and resets itself to the value in UwndCtntRO (CP-368). If the web reverses direction, with the Unwind axis taking up web material, then the value will increment, and ultimately rollover upon reaching the UwndCtntRO (CP-368) limit. It is often used, via a comparator in the PLC, to declare a near-empty roll.

Maximum Value: 999999.9
Units: EU

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-07 UwndEstDia}

Unwind Estimated Diameter (MP-07) is calculated from roll rotation and dancer movement. It can also be forced to the value in UwndDiaPrst (CP-364) via PLC action. It is used to translate web speed commands into roll RPM.

Minimum Value: \(0.00 \quad\) Maximum Value: 9999.99
Units: EU

\section*{MP-09 Uwnd Rot}

Unwind Rotations (MP-09) displays a totalized rotational count of the Unwind Roll.
Minimum Value: -999999.9 Maximum Value: 999999.9
Units: Roll Rotations

\section*{MP-11 Wind Hz}

Wind Hz (MP-11) displays the current frequency of the Wind Encoder Input, in Hertz.
Minimum Value: -180000 Maximum Value: 180000
Units: Hertz

\section*{MP-12 WindEncRPM}

Wind Encoder RPM (MP-12) displays the current speed of the Wind encoder in RPM, based on PPR Wind (CP-266).

Minimum Value: -99999.9 Maximum Value: 99999.9
Units: RPM

\section*{MP-13 WindRollRPM}

Wind Roll RPM (MP-13) displays the WindGearRden (CP-265) applied to WindEncRPM (MP-12) to determine the WindRollRPM value.

Minimum Value: -99999.9 Maximum Value: 99999.9
Units: Roll RPM

\section*{MP-15 WindCnts}

Wind Counts (MP-15) displays the totalized encoder pulses from the Wind station. They are converted to engineering units and displayed in WindEstCtnt (MP-16). They will rollover, and begin again, as determined by WindCtntRO (CP369).

Minimum Value: -2000000000
Units: Counts

Maximum Value: 2000000000

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-16 WindEstCtnt}

Wind Estimated Content (MP-16) is calculated from approximate web travel, and increments during forward motion. It can be forced to the WindCtntPrst (CP-367) by PLC action. While incrementing, it will ultimately rollover over at the WindCtntRO (CP-369) limit. At rollover, it sets a PLC bit, and resets itself to the value in WindCtntRO (CP-369). If the web reverses direction, with the Wind axis taking up web material, then the value will decrement, and ultimately rollover upon reaching zero. It is often used, via a comparator in the PLC, to declare a near-empty roll.

Minimum Value: 0.0 Maximum Value: 9999999.9
Units: EU

\section*{MP-17 WindEstDia}

Wind Estimated Diameter (MP-17) is calculated from roll rotation and dancer movement. It can also be forced to the value in WindDiaPrst (CP-365) via PLC action. It is used to translate web speed commands into roll RPM.

Minimum Value: \(0.00 \quad\) Maximum Value: 9999.99
Units: EU

\section*{MP-19 Wind Rot}

Wind Rotations (MP-09) displays a totalized rotational count of the Wind Roll.
Minimum Value: -999999.9
Maximum Value: 999999.9
Units: Roll Rotations

\section*{MP-21 UwndRRef}

Unwind Ramped Reference (MP-21) is the instantaneous commanded speed, in roll RPM, for the unwind axis. It is derived from the LineSpdRRef (MP-42), diameter, and possibly dancer movement.

Minimum Value: -99999.9 Maximum Value: 99999.9
Units: Roll RPM

\section*{MP-22 UwndRR Err}

Unwind Ramped Reference Error (MP-22) displays the instantaneous difference between the commanded UwndRRef (MP-21) and the actual UwndRollRPM (MP-03).

Minimum Value: -99999.9 Maximum Value: 99999.9
Units: Roll RPM

\section*{MP-23 Uwnd Kff}

Unwind Kff (MP-23) is the feedforward gain for the unwind axis. It translates a target roll RPM into an approximate voltage output, which is then error-trimmed \(+/-\) to effect the desired speed. A reasonable accurate feedforward can minimize the need for error trim action, thus improving the response of the control loop. It is automatically adjusted for any change entered into UwndCOMax Volts (CP-281), or UwndMaxRPM (CP-329). It is also adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Minimum Value: 00.00
Maximum Value: 99999.99
Units: Volts/k Roll RPM
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-24 Uwnd FFwd}

Unwind Feedforward (MP-24) displays the estimated voltage command to the drive required achieve the commanded UwndRRef (MP-21). It is usually the major portion of the UwndCO Volts (MP-27) signal.

Minimum Value: - 15.00
Maximum Value: 15.00
Units: Volts

\section*{MP-25 Uwnd Intgrl}

Unwind Integral (MP-25) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Uwnd Intgrl is displayed in Volts. Uwnd Intgrl (MP-25) is a conditioned error signal that serves to adjust the UwndCO Volts (MP-27) to help achieve the desired speed. It is part of the PID error correction algorithm.

Minimum Value: - \(15.00 \quad\) Maximum Value: 15.00
Units: Volts

\section*{MP-26 Uwnd Trim}

Unwind Trim (MP-26) displays the value of the output of the PID compensator. Uwnd Trim is displayed in Volts. Uwnd Trim is the sum of the conditioned error signals that, combined with the Uwnd FFwd (MP-24), become the UwndCO Volts (MP-27). Uwnd Trim is the combination of all three terms of the PID error correction algorithm.

Minimum Value: - \(15.00 \quad\) Maximum Value: 15.00
Units: Volts

\section*{MP-27 UwndCO Volts}

Unwind Control Output Volts (MP-27) displays the present value, in volts, of the Control Output (SigU) signal to the unwind drive. It is the combination of Uwnd FFwd (MP-24) plus Uwnd Trim (MP-26).

Minimum Value: -15.00 Maximum Value: 15
Units: Volts

\section*{MP-28 UwndCO Bits}

Unwind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigU) signal to the unwind drive. UwndCO Bits is the UwndCO Volts (MP-27) expressed in DAC bits.

Minimum Value: -32768
Maximum Value: 32767
Units: Bits

\section*{MP-29 UwndCOMaxBits}

Unwind Control Output Maximum Bits (MP-29) reflects the maximum allowed output in units of DAC bits. The value of UwndCOMax Volts (CP-281) determines this parameter, based on the conversion of 32767 bits \(=15\) VDC.

Minimum Value: \(0 \quad\) Maximum Value: 32767
Units: Bits

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-31 WindRRef}

Wind Ramped Reference (MP-31) is the instantaneous commanded speed, in roll RPM, for the wind axis. It is derived from the LineSpdRRef (MP-42), diameter, and possibly dancer movement.

Minimum Value: -99999 Maximum Value: 99999
Units: Roll RPM

\section*{MP-32 WindRR Err}

Wind Ramped Reference Error (MP-32) displays the instantaneous difference between the commanded WindRRef (MP-31) and the actual WindRollRPM (MP-13).

Minimum Value: -99999 Maximum Value: 99999
Units: Roll RPM

\section*{MP-33 Wind Kff}

Wind Kff (MP-33) is the feedforward gain for the wind axis. It translates a target roll RPM into an approximate voltage output, which is then error-trimmed \(+/\) - to effect the desired speed. A reasonable accurate feedforward can minimize the need for error trim action, thus improving the response of the control loop. It is automatically adjusted for any change entered into WindCOMax Volts (CP-286), or WindMaxRPM (CP-339). It is also adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Minimum Value: 0.000
Maximum Value: 9999.999
Units: Volts/k Roll RPM

\section*{MP-34 Wind FFwd}

Wind Feedforward (MP-34) displays the estimated voltage command to the drive required to achieve the commanded WindRRef (MP-31). It is usually major portion of the WindCO Volts (MP-37) signal.

Minimum Value: - 15.0
Maximum Value: 15
Units: Volts

\section*{MP-35 Wind Intgrl}

Wind Integral (MP-35) displays the value of the integral term (i.e., integrated error times the Ki constant) of the PID compensator. Integral is displayed in Volts. Wind Intgrl (MP-35) is a conditioned error signal that serves to adjust the WindCO Volts (MP-37) to help achieve the desired speed. It is part of the PID error correction algorithm.

Minimum Value: -15.0 Maximum Value: 15
Units: Volts

\section*{MP-36 Wind Trim}

Wind Trim (MP-36) displays the value of the output of the PID compensator. Wind Trim is displayed in Volts. Wind Trim is the sum of the conditioned error signals that, combined with the WindFFwd (MP-34), become the WindCO Volts (MP-37). Wind Trim is the combination of all three terms of the PID error correction algorithm.

Minimum Value: -15.0 Maximum Value: 15
Units: Volts

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-37 WindCO Volts}

Wind Control Output Volts (MP-37) displays the present value, in volts, of the Control Output (SigW) signal to the wind drive. It is the combination of WindFFwd (MP-34) plus Wind Trim (MP-36).

Minimum Value: -15.0 Maximum Value: 15
Units: Volts

\section*{MP-38 WindCO Bits}

Wind Control Output Bits (MP-28) displays the present value, in DAC bits, of the Control Output (SigW) signal to the wind drive. WindCO Bits is the WindCO Volts (MP-37) expressed in DAC bits.

Minimum Value: -32768
Maximum Value: 32767
Units: Bits

\section*{MP-39 WindCOMaxBits}

Wind Control Output Maximum Bits (MP-39) reflects the maximum allowed output in units of DAC bits. The value of WindCOMaxVolts (CP-286) determines this parameter, based on the conversion of 32767 bits \(=15\) VDC.

Minimum Value: 0
Maximum Value: 32767
Units: Bits

\section*{MP-40 Line Speed}

Line Speed (MP-40) is an actual measured speed. It is derived from the roll RPM of the non-dancer-trimmed axis, and converted into web speed via the currently calculated diameter estimate. When the system is operating under good control, it should agree with the commanded LineSpdSRef (MP-41).

Minimum Value: -99999999
Maximum Value: 99999999
Units: EU/Tm

\section*{MP-41 LineSpdSRef}

Line Speed Scaled Reference (MP-41) displays the currently commanded target web speed. It may come from several possible sources, via LineSpdSrc (CP-203). If the non-dancer-trimmed axis is under control of this device, and a high Line Speed is commanded, this value will be automatically reduced to the limit calculated by EstMaxLnSpd (MP-43), due to speed limitations arising from a small diameter on one axis.

Minimum Value: -99999999 Maximum Value: 99999999
Units: EU/Tm

\section*{MP-42 LineSpdRRef}

Line Speed Ramped Reference (MP-42) displays the web speed command. This is the output of the ramp calculations. When the ramp has been completed, the LineSpdRRef (MP-42) should equal the LineSpdSRef (MP-41).

Minimum Value: -99999999
Units: EU/Tm

Maximum Value: 99999999

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-43 EstMaxLineSpd}

Estimated Maximum Line Speed (MP-43) is calculated from an analysis of the potential maximum speeds achievable from each axis. Typically the axis with the smallest diameter will limit the maximum Line Speed possible. If the non-dancer-trimmed axis is under control of this device, and a high Line Speed is commanded, the LineSpdSRef (MP-41) will be automatically adjusted (limited), as new values of EstMaxLnSpd (MP-43) are calculated.

Minimum Value: \(0 \quad\) Maximum Value: 99999999
Units: EU/Tm

\section*{MP-48 Uwnd State}

Unwind State (MP-48) displays the present operating state of the Unwind control loop (see list below).
\[
\begin{aligned}
& 7=\text { Diagnostics } \\
& 6=\text { Jog Stop } \\
& 5=\text { Jog Reverse } \\
& 4=\text { Jog Forward } \\
& 3=\text { Not Defined } \\
& 2=\text { RUN } \\
& 1=\text { H-Stop } \\
& 0=\text { F-Stop }
\end{aligned}
\]

Minimum Value: \(0 \quad\) Maximum Value: 7
Units: Coded

\section*{MP-49 Wind State}

Wind State (MP-49) displays the present operating state of the wind control loop (see list below).
\[
\begin{aligned}
& 7=\text { Diagnostics } \\
& 6=\text { Jog Stop } \\
& 5=\text { Jog Reverse } \\
& 4=\text { Jog Forward } \\
& 3=\text { Not Defined } \\
& 2=\text { RUN } \\
& 1=\text { H-Stop } \\
& 0=\text { F-Stop }
\end{aligned}
\]

Minimum Value: 0
Maximum Value: 7
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-50 System State}

System State (MP-50) displays the present system operating state of the CX-1102 (see list below). Only one operating state may be active at a time. To access either the "Run", "Load" or the "Jog" operating state, the F-Stop, Unload and H -Stop inputs must be closed.
\[
\begin{aligned}
& 8=\text { Diagnostics } \\
& 7=\text { Setup } \\
& 6=\text { Not Defined } \\
& 5=\text { Jog } \\
& 4=\text { RUN } \\
& 3=\text { Load } \\
& 2=\text { H-Stop } \\
& 1=\text { Unload } \\
& 0=\text { F-Stop }
\end{aligned}
\]

Minimum Value: 0
Maximum Value: 8
Units: Coded

\section*{MP-51 Active Blk}

Active Block (MP-51) displays the active block (0-7). The block can be selected and made active by the Block select bits (Blk Sel A,B.C), in the PLC Programming screen if Blk Sel Source (CP-478) is set to " 1 " (DigIn \& PLC). Or the block can be selected and made active by the keypad if Blk Sel Source (CP-478) is set to "2" (Keypad Blk Sel).
Minimum Value: \(0 \quad\) Maximum Value: 7
Units: Coded

\section*{MP-52 InvalidBlks}

Invalid Blocks (MP-52) displays the status of the blocks in the Block Setup screens. A " 1 " indicates that there is an error with the corresponding block (see graphic below). Generally, this indicates that an overflow condition can occur if the corresponding block is activated. In addition, since other parameters are used in conjunction with the Block Parameters that you selected, an error can result from a parameter that is not selected in Block Parameters. If a bad block is activated, the CX-1102 will execute an F-Stop until either the block error is corrected or a another block is activated.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-53 Misc Status}

Miscellaneous Status (MP-53) displays various status conditions (see graphic below). A " 1 " in the Unwind Drive Enable bit indicates a drive enabled output. A " 1 " in any other bit location indicates an active condition.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-54 Std Alms}

Std Alarms (MP-54) displays various alarm conditions (see graphic below). A "1" in any bit location indicates an active condition.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-55 Custom Alms}

Custom Alarms (MP-55) displays the outputs of the PLC numerical comparators. A " 1 " in bit locations 0-3 indicates that the result of the compare (Cmprx Parm value vs. Cmprx Val) is true for the given Cmprx Type. A " 1 " in bit locations 4-7 indicates that the result of the compare (Cmprx Parm value vs. Cmprx Val) is false for the given Cmprx Type (the NOT is true). Refer to CP-380 through CP-395.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-56 Misc Alarms}

Misc Alarms (MP-56) displays various alarm conditions (see graphic below). A " 1 " in any bit location indicates an active condition.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-58 Dancer State}

Dancer State (MP-58) displays the present condition of the Dancer LED mounted on the Analog board. The LED conditions indicate various specific Dancer arm states.
\[
\begin{array}{ll}
3=\text { Between limits }- \text { OK } & =\text { LED Green } \\
2=\text { Full limit } & =\text { LED Orange } \\
1=\text { Empty limit } & =\text { LED Red } \\
0=\text { Not calibrated } & =\text { LED Off }
\end{array}
\]

Minimum Value: 0
Maximum Value: 3
Units: Coded

\section*{MP-59 Setup State}

Setup State (MP-59) displays the present condition of the Setup LED mounted on the Analog board. The LED conditions indicate the progression of specific steps as the controller attempts to complete the Setup sequence. If the sequence cannot be completed, this indication is helpful to determine specifically which operation was unsuccessful.
\[
\begin{aligned}
& \text { Test Failure } \\
& 10=\text { Setup complete } \\
& 9=\text { Unwind Direction } \\
& 8=\text { Wind Direction } \\
& 7=\text { Dancer Empty Calibration } \\
& 6=\text { Dancer Full Calibration } \\
& 5=\text { Unwind Polarity } \\
& 4=\text { Wind Polarity } \\
& 3=\text { Unwind Roll Configuration } \\
& 2=\text { Wind Roll Configuration } \\
& 1=\text { Axis Configuration } \\
& 0=\text { Application Configuration }
\end{aligned}
\]
= LED Flashing Red
= LED Green
\[
=\text { LED Flashing Green }
\]
= LED Alternating Orange and Green
= LED Flashing Orange
= LED Orange
= LED Alternating Red and Orange
= LED Alternating Red and Green
= LED Red
= LED Red
= LED Red
= LED Off (Setup has never been done)

Minimum Value: \(0 \quad\) Maximum Value: 10
Units: Coded

\section*{MP-60 Uwnd Dirn}

Unwind Direction (MP-60) displays the present condition of the Uwnd LED mounted on the Analog board. The LED conditions indicate unwind roll motion, forward or reverse.
\[
\begin{array}{ll}
2=\text { Unwind forward motion } & =\text { LED Green } \\
1=\text { Unwind reverse motion } & =\text { LED Red } \\
0=\text { Unwind no motion, }<1 \mathrm{~Hz} & =\text { LED Off }
\end{array}
\]

Minimum Value: \(0 \quad\) Maximum Value: 2
Units: Coded

\section*{MP-61 Wind Dirn}

Wind Direction (MP-61) displays the present condition of the Wind LED mounted on the Analog board. The LED conditions indicate wind roll motion, forward or reverse.
\[
\begin{array}{ll}
2=\text { Wind forward motion } & =\text { LED Green } \\
1=\text { Wind reverse motion } & =\text { LED Red } \\
0=\text { Wind no motion, }<1 \mathrm{~Hz} & =\text { LED Off }
\end{array}
\]

Minimum Value: 0
Maximum Value: 2
Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-70 Wrap Pty}

Wrap Polarity (MP-70) displays the present system configuration in regard to various combinations of overwrap/underwrap.

\(11=\) Wind underwrap, Unwind underwrap
\(10=\) Wind underwrap, Unwind overwrap
\(01=\) Wind overwrap, Unwind underwrap
\(00=\) Wind overwrap, Unwind overwrap
Minimum Value: 00000000
Maximum Value: 00000011
Units: Coded

\section*{MP-71 SigPolarity}

Signal Polarities (MP-71) displays the present system configuration in regard to encoder polarity, and drive output polarity for both axis. For encoder polarity digits, a " 0 " in the designated location means the encoder signal wiring (quadrature signal A and B) will be accepted "as wired", with positive values meaning forward web motion. A "1" in that location means the perceived raw signal will be multiplied by " -1 " before interpreting direction. This is the electronic or mathematical equivalent to reversing the A and B wires. For drive command output digits, a "0" means a positive signal will drive the axis in the forward direction, and a "1" means that a negative signal is needed to drive the axis in the forward direction. The polarities are shown for two conditions. The normalized condition is for a basic arrangement with both rolls in an Overwrap mode. The normalized polarities can be preset manually, or set automatically during the learn setup mode. See UwndEncPty (CP-264), and WindEncPty (CP-269). The operational condition reflects the present mode, after acknowledging that one or both axis may be set for Underwrap.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-72 UwndCntrlLp}

Unwind Control Loop (MP-72) displays the present operating mode of the unwind axis. These modes are automatically selected depending on the present system State (MP-50).
```

2 = PsnHld (Position Hold)
1 = Vel (Velocity Loop)
0= OL (Open Loop)

```

Minimum Value: \(0 \quad\) Maximum Value: 2
Units: Coded

\section*{MP-73 WindCntrlLp}

Wind Control Loop (MP-73) displays the present operating mode of the wind axis. These modes are automatically selected depending on the present system State (MP-50).
\[
\begin{aligned}
& 2=\text { PsnHld (Position Hold }) \\
& 1=\text { Vel (Velocity Loop) } \\
& 0=\text { OL (Open Loop) }
\end{aligned}
\]

Minimum Value: 0
Maximum Value: 2
Units: Coded

\section*{MP-80 Dancer Bits}

Dancer Bits (MP-80) displays the present value of the analog Dancer input signal, in bits from the ADC.
Minimum Value: -8192
Maximum Value: 8191
Units: Bits

\section*{MP-81 Dancer Volts}

Dancer Volts (MP-81) displays the analog Dancer signal. Note that the dancer may not generate the full range of voltage. Configurations that generate larger voltage swings may attain higher accuracy in diameter and line speed calculations.

Minimum Value: -5.0 Maximum Value: 5.0
Units: Volts

\section*{MP-82 Dancer Ctnt}

Dancer Content (MP-82) displays an estimation of the amount of web material presently stored within the dancer assembly. It assumes that there is a linear relationship between dancer volts and dancer content.

Minimum Value: \(0 \quad\) Maximum Value: 9999999
Units: Web EU

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-83 DncrCtnt Err}

Dancer Content Error (MP-83) displays the difference between requested Dancer SP (CP-250) and actual Dancer Ctnt (MP-82). This error will be used to trim the speed of the dancer trimmed axis and attempt to restore the dancer content (position) toward the Dancer SP (CP-250).

Minimum Value: -9999999 Maximum Value: 9999999
Units: Web EU

\section*{MP-84 Dancer Trim}

Dancer Trim (MP-84) displays the amount of corrective line speed adjustment applied to the "dancer trimmed" roll. Proportional to the dancer error.

Minimum Value: -99999999 Maximum Value: 99999999
Units: EU/Tm

\section*{MP-86 Ext LS Bits}

External Line Speed Bits (MP-86) displays the present value of the analog Line Speed input signal, in bits from the ADC.
Minimum Value: -8192 Maximum Value: 8191
Units: Bits

\section*{MP-87 Ext LS Volts}

External Line Speed Volts (MP-87) displays the analog Line Speed signal. It operates over the range of +/-5 VDC.
Reverse direction can be achieved via negative signal in some configurations, or via a positive signal plus a wire terminal reversing input switch.

Minimum Value: -5.0
Maximum Value: 5
Units: Volts

\section*{MP-88 Ext LineSpd}

External Line Speed (MP-88) displays the Ext LS Volts (MP-87) signal converted into web line speed units. This display actively monitors the input signal even if the system is presently using another source for the Line Speed, or even if the value is later limited for various reasons.

Minimum Value: -99999999 Maximum Value: 99999999
Units: EU/Tm

\section*{MP-90 SerCom Char In}

Serial Communications Character In (MP-90) displays the value of the last byte that was received by the Serial Communications port. SerCom Char In (MP-90) is displayed in a decimal format. SerCom Char In (MP-90) is used primarily for troubleshooting.

Minimum Value: 0
Maximum Value: 255
Units: Binary Character

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-91 SerCom Errs}

Serial Communications Errors (MP-91) displays all serial communications errors that occurred during the most recent transmission.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-94 ROM Test}

ROM Test (MP-94) displays the result of the most recent ROM Test. ROM Test runs a checksum test on the CX-1102 program memory.
\(1=\) Memory Test Fail
\(0=\) Memory Test Pass

Minimum Value: 0
Maximum Value: 1
Units: Coded

\section*{MP-95 SRAM Test}

SRAM Test (MP-95) displays the result of the most recent SRAM Test. SRAM Test runs a read/write test on the scratch-pad memory.
\(1=\) Memory Test Fail
\(0=\) Memory Test Pass

Minimum Value: 0
Maximum Value: 1
Units: Coded

\section*{MP-96 NVRAM Test}

Non Volatile RAM Test (MP-96) displays the result of the most recent Non Volatile RAM Test. The test runs both a read/write and a checksum test on the nonvolatile memory. The parameter values, the PLC program and the backups are all stored in this memory.
\[
\begin{aligned}
& 1=\text { Memory Test Fail } \\
& 0=\text { Memory Test Pass }
\end{aligned}
\]

Minimum Value: 0
Maximum Value: 1
Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-97 Model \#}

Model \# (MP-97) displays the model number for this CX-1102. This model number is unique to the CX-1102 series of controllers.

Minimum Value: 1000 Maximum Value: 60000
Units: Model Number

\section*{MP-98 RELEASE}

RELEASE (MP-98) is the date that the software for this individual CX-1102 was released. The numeric, six digit format is: year, month, day.

Minimum Value: 090102 Maximum Value: 123105
Units: Date

\section*{MP-99 REVISION}

REVISION (MP-99) is the revision level of the software for this individual CX-1102.
Minimum Value: \(0.50 \quad\) Maximum Value: 99.99
Units: Rev Level

\section*{MP-100 DI 7..0}

Digital Input 7..0 (MP-100) displays the value of the "J6" digital inputs. A ' 1 ' in the bit location (see graphic below) indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common).


Minimum Value: 00000000
Maximum Value: 01111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-101 DI \(15 . .8\)}

Digital Input \(15 . .8\) (MP-101) displays the value of the " J 7 " digital inputs. A ' 1 ' in the bit location (see graphic below) indicates a "low voltage" condition on the corresponding input (which is consistent with a contact closure to common). These eight Inputs can be set up in the PLC Programming screen to generate a One-Shot-Pulse on a high-to-low transition.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-102 DO 7..0}

Digital Output \(7 . .0\) (MP-102) displays the value of the " J 2 " digital outputs. A ' 1 ' in the bit location (see graphic below) indicates an active "low voltage" condition on the corresponding open collector output (which would sink DC current).


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-103 KeyPad Lockout}

Keypad Lockout (MP-103) displays the Keypad Lockout status. The Keypad Lockout is active when "On" is displayed. When Keypad Lockout is active, Control Parameter values can not be changed, with the exception of the Control Parameters that are exempted by CP's 480-489. The Keypad Lockout is not active when "OFF" is displayed. When the Keypad Lockout is not active, any Control Parameter can be changed.

Minimum Value: \(0 \quad\) Maximum Value: 1
Units: Coded

\section*{MP-107 TMR4 TIME}

Timer 4 Time (MP-107) displays the elapsed time, in seconds, for Timer 4 during the delay part of its operation.
Minimum Value: \(0 \quad\) Maximum Value: 86400
Units: Seconds

\section*{MP-108 PLC Mon 1 Val}

PLC Monitor 1 Value (MP-108) displays both the description and the value of the PLC bit that was selected in PLC Monitor 1 (CP-305). Please note that a description of the PLC bit appears on the display line instead of the parameter name (PLC Mon 1 Val).

Minimum Value: \(0 \quad\) Maximum Value: 1
Units: Coded

\section*{MP-109 PLC Mon 2 Val}

PLC Monitor 2 Value (MP-109) displays both the description and the value of the PLC bit that was selected in PLC Monitor 2 (CP-306). Please note that a description of the PLC bit appears on the display line instead of the parameter name (PLC Mon 2 Val ).

Minimum Value: \(0 \quad\) Maximum Value: 1
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-110 PLC 15-8}

PLC 15-8 (MP-110) displays the status of PLC bits 15-8 (See graphic and list below). A " 1 " in any bit indicates that the input is "active". The digital inputs are active low.


Description
Digital Input 8
Digital Input 9
Digital Input 10
Digital Input 11
Digital Input 12
Digital Input 13
Digital Input 14
Digital Input 15

Default Function
Unwind Jog Forward
Unwind Jog Reverse
Wind Jog Forward
Wind Jog Reverse
Unwind Under Wrap
Wind Under Wrap
Line Speed Reverse
Web Reset

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-111 PLC 23-16}

PLC 23-16 (MP-111) displays the status of the internal PLC status bits 23-16 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-112 PLC 31-24}

PLC 31-24 (MP-112) displays the status of the internal PLC status bits 31-24 (See graphic below). A " 1 " in any bit indicates that the bit is "active"


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-113 PLC 39-32}

PLC 39-32 (MP-113) displays the status of the internal PLC status bits 39-32 (See graphic below). A "1" in any bit indicates that the bit is "active"


\footnotetext{
Bit Name
Cntr1 Out
Cntr2 Out Cntr3 Out Cntr4UpO Cntr4DnO
Low Power UwndCtntRO
WindCtntRO
}

Description
Counter 1 Output
Counter 2 Output
Counter 3 Output
Counter 4 Up counter Output
Counter 4 Down counter Output
Low Power Indication
UwndEstCtnt reached UwndCtntRO (CP-368) = UwndEstCtnt Rollover (one-shot)
WindEstCtnt reached WindCtntRO \((\) CP-369 \()=\) WindEstCtnt Rollover (one-shot)
Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

MP-114 PLC 47-40

PLC 47-40 (MP-114) displays the status of the internal PLC status bits 47-40 (See graphic below). A " 1 " in any bit indicates that the bit is "active"


Bit Name UwCOSign UwndDrvEn UwRmpActv UwRR@0Spd UwFb@0Spd UwMxFbSpd UwMxAcDcl UwMtrNRsp

Description
Unwind Command Output sign is negative (-)
Unwind Drive Enable
Unwind Ramp Active
Unwind Ramp Reference (MP-21) less than Zero Speed (CP-370)
UnwindRollRPM (MP-03) less than Zero Speed (CP-370)
Unwind at Maximum Feedback Speed (CP-339)
Unwind at Maximum Accel/Decel (CP-373)
Unwind Motor/Drive NOT Responding (CP-372)

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-115 PLC 55-48}

PLC 55-48 (MP-115) displays the status of the internal PLC status bits 55-48 (See graphic below). A "1" in any bit indicates that the bit is "active".


Bit Name
UwndMaxHz
Uw@MaxVlts WdCOSign WindDrvEn WdRmpActv WdRR@0Spd WdFb@0Spd WdMxFbSpd

Description
Uwnd Hz (MP-01) > Max allowed Frequency \(=180 \mathrm{KHz}\)
UwndCO Volts (MP-27) at UwndCOMaxVolts (CP-281)
Wind Command Output sign is negative (-)
Wind Drive Enable
Wind Ramp Active
WindRRef (MP-31) less than Zero Speed (CP-370)
WindRollRPM (MP-13) less than Zero Speed (CP-370)
Wind at Maximum Feedback Speed (CP-329)
Maximum Value: 11111111
Minimum Value: 00000000
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-116PLC 63-56}

PLC 63-56 (MP-116) displays the status of the internal PLC status bits 63-56 (See graphic below). A "1" in any bit indicates that the bit is "active".


Bit Name
WdMxAcDcl
WdMtrNRsp
WindMaxHz Wd@MaxVlts Cmpr1 Out Cmpr2 Out Cmpr3 Out Cmpr4 Out

Description
Wind at Maximum Accel/Decel
Wind Motor/Drive NOT Responding (CP-372)
Wind Hz (MP-11) > Max allowed Frequency \(=180 \mathrm{KHz}\)
WindCO Volts (MP-37) at WindCOMaxVolts (CP-286)
Comparator 1 Output
Comparator 2 Output
Comparator 3 Output
Comparator 4 Output

Minimum Value: 00000000
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-117PLC 71-64}

PLC 71-64 (MP-117) displays the status of the internal PLC status bits 71-64.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-118PLC 79-72}

PLC 79-72 (MP-118) displays the status of the internal PLC status bits 79-72 (See graphic below). A " 1 " in any bit indicates that the bit is "active". These bits are only used to monitor the operating state of the CX-1102.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-119 PLC 87-80}

PLC 87-80 (MP-119) displays the status of the internal PLC status bits 87-80 (See graphic below). A "1" in any bit indicates that the bit is "active". These bits are only used to monitor the parameter block that is active.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-120 PLC 95-88}

PLC 95-88 (MP-120) displays the status of the internal PLC status bits 95-88. None of these bits are presently active. They are reserved for future use.


Bit Name
UwndRvs
WindRvs
DncrFull
DncrEmpty
DncrErPos
Web Broken
DncrLded
DncrIgnor

Description
Unwind Roll Reverse command indicated
Wind Roll Reverse command indicated
Dancer Full > 95\% Full
Dancer Empty < 5\% Full
Dancer Error Positive - Dancer Ctnt (MP-82) > Dancer SP (CP-250)
Web Broken State
Dancer Loaded - dancer @ position \(\pm 5 \%\)
Dancer Ignored

Minimum Value: \(00000000 \quad\) Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-121 PLC 107-100}

PLC 107-100 (MP-121) displays the status of PLC bits 107-100 (See graphic and list below). A " 1 " in any bit indicates that the output is "active". The digital outputs are active low (current sinking).

\begin{tabular}{ll} 
Bit Name & \(\underline{\text { Description }}\) \\
Digital Output 0 & Unwind Enable \\
Digital Output 1 & Wind Enable \\
Digital Output 2 & Unwind Error \\
Digital Output 3 & Wind Error \\
Digital Output 4 & Wind Roll Full \\
Digital Output 5 & Dancer \\
Digital Output 6 & Web Break \\
Digital Output 7 & Spare
\end{tabular}

Minimum Value: \(00000000 \quad\) Maximum Value: 11111111
Units: Coded

\section*{MP-122 PLC 115-108}

PLC 115-108 (MP-122) displays the status of the internal PLC control bits 115-108 (See graphic below). A " 1 " in any bit indicates that the bit is "active". These internal bits (control relays) can be used as global "control relays". For example, they can be used to create one-shots or latches. They can also be used to simplify programming.


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-123 PLC 123-116}

PLC 123-116 (MP-123) displays the status of the internal PLC control bits 123-116 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


> Minimum Value: \(00000000 \quad\) Maximum Value: 11111111 Units: Coded

\section*{MP-124 PLC 131-124}

PLC 131-124 (MP-124) displays the status of the internal PLC control bits 131-124 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-125 PLC 139-132}

PLC 139-132 (MP-125) displays the status of the internal PLC control bits 139-132 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-126 PLC 147-140}

PLC 147-140 (MP-126) displays the status of the internal PLC control bits 147-140 (See graphic below). A " 1 " in any bit indicates that the bit is "active". Blk Sel A, B, C select the block that is active, if Blk Sel Source (CP-378) has been set to " 1 " (DgIn). The chart below indicates which block has been selected, based on the Block Select A, B or C inputs.

\begin{tabular}{llll}
\multicolumn{3}{l}{ Blk Sel } \\
C & B & A & \(\underline{\text { Block Selected }}\) \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & 1 & 3 \\
1 & 0 & 0 & 4 \\
1 & 0 & 1 & 5 \\
1 & 1 & 0 & 6 \\
1 & 1 & 1 & 7
\end{tabular}

Bit Name Blk Sel A Blk Sel B Blk Sel C Not In Use FrzDiaCal UwRstDia WdRstDia UwRstIngl

Description
Block Select A
Block Select B
Block Select C
Freeze Diameter Calculations
Unwind Reset Diameter to Preset value
Wind Reset Diameter to Preset value
Unwind Reset Integral to zero

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-127 PLC 155-148}

PLC 155-148 (MP-127) displays the status of the internal PLC control bits 155-148 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name WdRstIngl UwRstCtnt WdRstCtnt UwFrzIntgrl WdFrzIntgrl UwUndrWrp WdUndrWrp UwRot Rst

Description
Wind Reset Integral to zero
Unwind Reset Content to Preset value
Wind Reset Content to Preset value
Unwind Freeze Integral (Freeze at current value)
Wind Freeze Integral (Freeze at current value)
Unwind Underwrap configuration
Wind Underwrap configuration
Unwind Rotation Reset

Minimum Value: 00000000
Units: Coded

Maximum Value: 11111111

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-128 PLC 163-156}

PLC 163-156 (MP-128) displays the status of the internal PLC control bits 163-156 (See graphic below). A "1" in any bit indicates that the bit is "active".


Bit Name
WdRot Rst
NoDncrTrm LSFrzRamp Negate LS Data Copy 1 Data Copy 2 Not In Use Not In Use

Description
Wind Rotation Reset
No Dancer Trim
Line Speed Freeze Ramp
Negate Line Speed Scaled Reference, change sign of LineSpdSRef (MP-41)

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-129 PLC 171-164}

PLC 171-164 (MP-129) displays the status of the internal PLC control bits 171-164. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name
Not In Use
Not In Use
Not In Use StrtTrace Scroll Up Scroll Down Not In Use NOP Opnd

Description

Start Data Trace
Remote Scroll Up (CP-400, 401)
Remote Scroll Down (CP-400, 401)

No Operation Operand

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{MP-130 PLC 179-172}

PLC 179-172 (MP-130) displays the status of the internal PLC control bits 179-172. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-131 PLC 187-180}

PLC 187-180 (MP-131) displays the status of the internal PLC control bits 187-180. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name
SysFStpRq Not in Use UwJgFwdRq UwJgRvsRq WdJgFwdRq WdJgRvsRq UwOpnLpRq WdOpnLpRq

Description
Request System State change to F-Stop State
Request Unwind Axis Jog Forward State
Request Unwind Axis Jog Reverse State
Request Wind Axis Jog Forward State
Request Wind Axis Jog Reverse State
Request Unwind Axis Open Loop control
Request Wind Axis Open Loop control

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-132 PLC 195-188}

PLC 195-188 (MP-132) displays the status of the internal PLC control bits 195-188. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


\footnotetext{
Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded
}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-133 PLC 203-196}

PLC 203-196 (MP-133) displays the status of the internal PLC control bits 203-196 (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name
Not In Use
Not In Use
Not In Use
Not In Use UwndOpnLp WindOpnLp Not In Use Not In Use

Description

Unwind in Open Loop Mode
Wind in Open Loop Mode

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-134 PLC 211-204}

PLC 211-204 (MP-134) displays the status of the internal PLC control bits 211-204. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name
UwndFStop
UwndHStop
UwndRUN
Not in Use UwndJgFwd UwndJgRvs UwndJgStp
UwndDiag

Description
Unwind in F-Stop State
Unwind in H-Stop State
Unwind in Run State
Unwind in Jog Forward State
Unwind in Jog Reverse State
Unwind in Jog Stop State
Unwind in Diagnostics State

Minimum Value: \(00000000 \quad\) Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-135 PLC 219-212}

PLC 219-212 (MP-135) displays the status of the internal PLC control bits 219-212. (See graphic below). A " 1 " in any bit indicates that the bit is "active".


Bit Name
WindFStop
WindHStop
WindRUN
Not in Use
WindJgFwd
WindJgRvs
WindJgStp
WindDiag

Description
Wind in F-Stop State
Wind in H-Stop State
Wind in Run State
Wind in Jog Forward State
Wind in Jog Reverse State
Wind in Jog Stop State
Wind in Diagnostics State

Minimum Value: 00000000
Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-150Last Reset}

Last Reset (MP-150) displays a " 1 " in a bit to indicate the reason for the last reset.


Minimum Value: \(00000000 \quad\) Maximum Value: 11110111
Units: Coded

\section*{MP-151Mise Intrpt}

Miscellaneous Interrupts (MP-151) displays a " 1 " in a bit to indicate which of the various system interrupts may have caused the last reset.


Minimum Value: 00000000
Maximum Value: 00111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-152 Device Alms}

Device Alarms (MP-152) displays the status of microprocessor or other hardware related alarms. Notification of a bad block selection is also included.


Minimum Value: 00000000
Maximum Value: 00001111
Units: Coded

\section*{MP-153 PC at Intrpt}

Program Counter at Interrupt (MP-153) shows where the last interrupt of the microprocessor occurred. If the CX1102 repeatedly displays the "RESET FAULT" error box, then record the "PC @Intrpt" value as well as the line just above it (which indicates the cause of the reset), before you press the clear key to continue. The program counter at interupt is stored in the Program Counter at Interrupt (MP-153) Monitor Parameter for review. A value of " 2560 " is normal.

Minimum Value: 2560
Maximum Value: 524288
Units: Address

\section*{MP-154 Norm Pwr Ups}

Normal Power Ups (MP-154) displays the number of normal power-ups since the most recent "Clear-7" power-up . This value is reset only by a "Clear-7" power-up. Norm Pwr Ups (MP-154) is used primarily for troubleshooting.

Minimum Value: 1
Units: Counts

Maximum Value: 65535

\section*{MP-155 Low Pwr Cntr}

Low Power Counter (MP-155) displays the number of low power detections, including normal "Power Downs". You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). Low Pwr Cntr (MP-155) is used primarily for troubleshooting.

Maximum Value: 65535
Units: Counts

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{MP-156 Mem Err Cntr}

Memory Error Counter (MP-156) displays the number of memory test failures that occurred during "Power Up". You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). Mem Err Cntr (MP-156) is used primarily for troubleshooting.

Minimum Value: \(0 \quad\) Maximum Value: 65535
Units: Counts

\section*{MP-157 WatchDogCntr}

Watch Dog Counter (MP-157) displays the number of watch dog resets that were caused by watchdog time-out. WatchDogCntr (MP-157) is used primarily for troubleshooting. You can reset this numeric value, but only in Clr Fault Cntrs (CP-491).
\[
\text { Minimum Value: } 0 \quad \text { Maximum Value: } 65535
\]

Units: Counts

\section*{MP-158 MiscIntrptCntr}

Miscellaneous Interrupt Counter (MP-158) displays the number of miscellaneous interrupts that occurred as the result of bus errors, address errors, divide-by-0 errors, unexecuted instruction errors, general exceptions, and unexecuted and spurious interrupts. You can reset this numeric value, but only in Clr Fault Cntrs (CP-491). MiscIntrptCntr (MP-158) is used primarily for troubleshooting.

Minimum Value: \(0 \quad\) Maximum Value: 65535
Units: Counts

\section*{MP-168 AnlgCal Ref A}

Analog Calibration Reference A (MP-168) displays the Analog Ref Val (CP-463) for the signal (AI1, AI2), which was selected in Analog Cal Sel (CP-461) and which was stored during the calibration of point A.

Minimum Value: -6.0
Maximum Value: 6
Units: Volts

\section*{MP-169AnlgCal Ref B}

Analog Calibration Reference B (MP-169) displays the AnalogRef Val (CP-463) for the signal (AI1, AI2), which was selected in Analog Cal Sel (CP-461) and which was stored during the calibration of point B.

Minimum Value: -6.0 Maximum Value: 6
Units: Volts

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-201 Setpoint X}

Setpoint X (CP-201) displays the active commanded Line Speed Setpoint. Setpoint X is a quick access, dynamically assigned parameter that is a mirror of the currently commanded Line Speed regardless of the source. It may display Line Spd SP (CP-210), or ExtLineSpd (MP-88) depending upon application choices. The label will change dynamically to indicate which parameter is being mirrored. If Line Spd SP (CP-210) is active, then any change to Setpoint X, (temporarily labeled LineSpeed X) will also change CP-210.

\author{
Minimum Value: -9999999 Maximum Value: 9999999 \\ Default Value: 0.0 Units: Web EU/Tm
}

\section*{CP-202 App Select}

Application Select (CP-202) determines which internal control algorithm will be active. The selection is based upon which axis are controlled by a speed command output from this device. And which axis should respond to correct a displacement of the dancer arm. This selection is made during initial setup. It can not be changed during RUN.
\(4=\) Dancer trims Wind.
\(3=\) Dancer trims Unwind.
\(2=\) Operate both axis. Dancer trims Wind.
\(1=\) Operate both axis. Dancer trims Unwind.
\(0=\) Direct Mode both axis.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 4 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-203 LineSpdSrc}

Line Speed Source (CP-203) selects the method of determining the desired line speed of the controlled axis. It can be a numerical entry via Line Spd SP (CP-210), an external Potentiometer or remote analog signal, or derived from the encoder mounted on an external lead axis which is controlled by another user-supplied system.
\(2=\) Analog Input
\(1=\) Line Speed SP \((\) CP-210 \()\) (default)
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 2 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-207 FixedDiaSel}

Fixed Diameter Select (CP-207) determines which rolls need automatic diameter calculations. If some of the rolls are fixed diameter nip rolls, their diameter will be numerically entered at setup via UwndDiaPrst (CP-364), or WindDiaPrst (CP-365).
\(3=\) Unwind and Wind are fixed
\(2=\) Wind is fixed
1 = Unwind is fixed
\(0=\) Neither are fixed (default)
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 3 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-208 UnitPrs Sel}

Unit Pairs Select (CP-208) determines the engineering units that will be associated with numerical entries or monitored data displays. In each pair selection the first Engineering Unit will apply to Web EU (Line) distance or speed, Roll Content. The second Engineering Unit will apply to Roll Diameter, Dancer Content and Dancer Position.
```

= Meters/Millimeters
5 = Centimeters/Millimeters
4 = Millimeters/Millimeters
3 = Yards/Inches
2 = Feet/Inches (default)
1 = Inches/Inches

```
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 6 \\
Default Value: 2 & Units: Coded
\end{tabular}

\section*{CP-209 Time Base}

Time Base (CP-209) selection determines the time units for Web EU/Tm (Line Speed). The lineal units were determined by UnitPrs Sel (CP-208). For example, CP-208 = 3 and CP-209 = 2 will result in Web EU/Tm (Line Speed) defined as Yards/Minute.
\[
\begin{aligned}
& 3=\text { per Hour } \\
& 2=\text { per Minute (default) } \\
& 1=\text { per Second }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 3 \\
Default Value: 2 & Units: Coded
\end{tabular}

\section*{CP-210 Line Spd SP}

Line Speed Setpoint (CP-210) is the numerically entered desired Line Speed. The units were determined by CP-208 and CP-209. It can be entered from the keypad, via serial link, or optionally via DeviceNet. It is considered the ideal, or target, speed. It may be internally reduced automatically if an axis diameter becomes too small to achieve the desired speed. Such automatic reductions would be revealed in LineSpdSRef (MP-41). Note that there are other alternatives for the source of the Line Speed command. See LineSpdSrc (CP-203).

Minimum Value: -9999999 Maximum Value: 9999999
Default Value: 0.0 Units: Web EU/Tm

\section*{CP-211 Max LineSpd}

Maximum Line Speed (CP-211) is an upper limit to the Line Spd SP (CP-210). It will prevent higher entries in Line Spd SP (CP-210). It also limits the acceptable line speed value from the alternative external line speed potentiometer. Caution: It can not limit an external lead axis that is not under its control.

Minimum Value: \(0 \quad\) Maximum Value: 9999999
Default Value: 9999999
Units: Web EU/Tm

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-212 Min LineSpd}

Minimum Line Speed (CP-212) is a lower limit to the Line Spd SP (CP-210). It will prevent lower entries in Line Spd SP (CP-210). It also limits the acceptable line speed value from the alternative external line speed potentiometer. Caution: It can not limit an external lead axis that is not under its control.

\author{
Minimum Value: 0 \\ Maximum Value: 9999999 \\ Default Value: 0 \\ Units: Web EU/Tm
}

\section*{CP-220 Stretch \%}

Stretch \% (CP-220) determines the ratio of dancer trimmed axis line speed to non-dancer trimmed axis line speed. A value of \(0.0 \%\) means equal line speeds, and would be appropriate for a non-extensible (no stretch) web material. If a material is expected to stretch, use a positive \(\%\), and if expected to shrink, use a negative \%. The dancer control action will attempt to automatically compensate for an incorrect stretch \%. However, the dancer will remain closer to the desired position, and dynamic response will be enhanced if this Stretch \% properly reflects the expected stretch/ shrink \%.

Minimum Value: -10.0
Default Value: 0.0

Maximum Value: 10
Units: \%

\section*{CP-221 Max Stretch \%}

Max Stretch \% (CP-221) is an upper limit to the Stretch \% (CP-220). It will prevent higher entries in Stretch \% (CP220).

Minimum Value: \(0.0 \quad\) Maximum Value: 10
Default Value: 10.0
Units: \%

\section*{CP-222 Min Stretch \%}

Min Stretch \% (CP-222) is a lower limit to the Stretch \% (CP-220). It will prevent lower entries in Stretch \% (CP220).

Minimum Value: -10.0 Maximum Value: 0.0
Default Value: -10.0
Units: \%

\section*{CP-230 Uwnd Direct SP}

Unwind Direct Setpoint (CP-203) is active only in Direct Mode (CP202=0). It sends a voltage value directly to the Control Output (SigU) terminal. Run/Stop commands are recognized, but no other control function is active. All encoder and dancer signals are ignored.

Minimum Value: - 15.0
Default Value: 0.0

Maximum Value: 15
Units: Volts

\section*{CP-235 Wind Direct SP}

Wind Direct Setpoint (CP-235) is active only in Direct Mode (CP202=0). It sends a voltage value directly to the Control Output (SigW) terminal. Run/Stop commands are recognized, but no other control function is active. All encoder and dancer signals are ignored.

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

Default Value: 0.0 Units: Volts

\section*{CP-240 Jog SP}

Jog Setpoint (CP-240) determines an axle rotaional speed in RPM of the Roll. It will be applied to the selected axis, in the selected direction, according to the state of the four Jog input terminals in Jog Mode. It is also used in some automatic Load/Unload sequences.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 999999 \\
Default Value: 50 & Units: Roll RPM
\end{tabular}

\section*{CP-241 Acl Tm Jog}

Acceleration Time Jog (CP-241) is the time, in seconds, to accelerate from 0 RPM to the Jog SP (CP-240).
Minimum Value: \(0.1 \quad\) Maximum Value: 3600
Default Value: \(2.000 \quad\) Units: Seconds

\section*{CP-242 Acl Rt Jog}

Acceleration Rate Jog (CP-242) is the rate in RPM/Sec. It is a different representation of the same rate as defined in Acl Tm Jog (CP-241).

Minimum Value: \(0 \quad\) Maximum Value: 9999999
Default Value: \(25.00 \quad\) Units: RPM/Sec

\section*{CP-243 Dcl Tm Jog}

Deceleration Time Jog (CP-243) is the time, in seconds, to decelerate from the Jog SP (CP-240) to 0 RPM.
Minimum Value: 0.1 Maximum Value: 3600
Default Value: \(2.000 \quad\) Units: Seconds

\section*{CP-244 Dcl Rt Jog}

Deceleration Rate Jog (CP-244) is the rate in RPM/Sec. It is a different representation of the same rate as defined in Dcl Tm Jog (CP-243).
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 9999999 \\
Default Value: 100.0 & Units: RPM/Sec
\end{tabular}

\section*{CP-250 Dancer SP}

Dancer Setpoint (CP-250) is the desired nominal dancer operating content (position). Any deviation of actual dancer position will result in a speed adjustment at the dancer trimmed axis, in the correct direction to return the dancer toward this setpoint position. Units are Web EU. The amount of web material in the dancer station is the content. The angular dancer arm position, or the height of the dancer bar must be translated by the user into terms of web material content. One half of the value in DncrCntFull (CP-272) would be typical.

Minimum Value: 0
Default Value: 20.00

Maximum Value: 99999
Units: Web EU

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-260 UwndGearRden}

Unwind Gear Reduction (CP-260) is the mechanical ratio between the encoder device and the Unwind roll. It is used to determine the number of encoder rotations for one roll rotation.

\author{
Minimum Value: 0.100 \\ Maximum Value: 20000 \\ Default Value: 1.000 \\ Units: Ratio
}

\section*{CP-261 Uwnd PPR}

Unwind Pulses Per Revolution (CP-261) is the number of pulses in one revolution of the encoder device mounted on the Unwind axis. The value may be called Counts, Lines, or Pulses by various encoder manufacturers. Do NOT multiply by four for quadrature encoders.

\author{
Minimum Value: 1 \\ Maximum Value: 60000 \\ Default Value: 60 \\ Units: Pulses/Rev
}

\section*{CP-264 UwndEncPty}

Unwind Encoder Polarity (CP-264) is a selection that determines whether the direction indicated by the Unwind encoder can be accepted as-wired, or whether its indicated polarity must be negated (change sign). Due to encoder and installation variations, there is no way to predict whether encoder signal A will lead, or lag, signal B during forward machine motion. This controller can electronically negate the raw encoder signal if needed.
\(2=\operatorname{Negated}(\) neg=fwd \()\)
\(1=\operatorname{Normal}(\) pos=fwd \()(\) default \()\)
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 2 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-265 WindGearRden}

Wind Gear Reduction (CP-265) is the mechanical ratio between the encoder device and the Wind roll axle. It is used to determine the number of encoder rotations for one axle rotation.

\author{
Minimum Value: 0.100 \\ Maximum Value: 20000 \\ Default Value: 1.000 \\ Units: Ratio
}

\section*{CP-266 Wind PPR}

Wind Pulses Per Revolution (CP-266) is the number of pulses in one revolution of the encoder device mounted on the Wind axis. The value may be called Counts, Lines, or Pulses by various encoder manufacturers. Do NOT multiply by four for quadrature encoders.
\(\begin{array}{ll}\text { Minimum Value: } 1 & \text { Maximum Value: } 60000 \\ \text { Default Value: } 60 & \text { Units: Pulses/Rev }\end{array}\)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-269 WindEncPty}

Wind Encoder Polarity (CP-269) is a selection that determines whether the direction indicated by the Wind encoder can be accepted as-wired, or whether its indicated polarity must be negated (change sign). Due to encoder and installation variations, there is no way to predict whether encoder signal A will lead, or lag, signal B during forward machine motion. This controller can electronically negate the raw encoder signal if needed.
\[
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg=fwd }) \\
& 1=\operatorname{Normal}(\text { pos=fwd })(\text { default })
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 2 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-271 DncrFullVolts}

Dancer Full Volts (CP-271) is part of the dancer scale factor setup, with CP-272 and CP-273. The value is the actual voltage expected from the dancer position sensor (Pot, Sonar, Optical sensor, etc.) when the dancer arm is at the full end of its travel, with maximum web content.

Minimum Value: -5.00 Maximum Value: 5
Default Value: 5.00 Units: Volts

\section*{CP-272 DncrCtntFull}

Dancer Content at Full Volts (CP-272) is part of the dancer scale factor setup, with CP-271 and CP-273. The value is the web content, or the amount of web material (in Web EU's CP-208), stored in the dancer station when the dancer is in its full travel position.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 999999 \\
Default Value: 40.00 & Units: Web EU
\end{tabular}

\section*{CP-273 DncrEmptyVlts}

Dancer Empty Volts (CP-273) is part of the dancer scale factor setup, with CP-271 and CP-272. The value is the actual voltage expected from the dancer position sensor (Pot, Sonar, Optical sensor, etc.) when the dancer arm is at the empty end of its travel, with minimum web content.
\begin{tabular}{ll} 
Minimum Value: -5.00 & Maximum Value: 5 \\
Default Value: 0.00 & Units: Volts
\end{tabular}

\section*{CP-276 ExtLSMaxVolts}

External Line Speed Maximum Volts (CP-276) is part of the scale factor setup for an external Line Speed analog signal source. This maximum volts, together with Ext LS Max (CP-277), determines the upper point of the calibration. See also CP-278 and CP-279 which determine the lower calibration point.
```

Minimum Value: -5.0 Maximum Value: 5
Default Value: 5.0 Units: Volts

```

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-277 Ext LS Max}

External Line Speed at Maximum Volts (CP-277) is part of the scale factor setup for an external Line Speed analog signal source. This speed, in Web EU/Tm units selected by UnitPrs Sel (CP-208), together with ExtLSMaxVolts (CP276), determines the upper point of the calibration. See also CP-278 and CP-279 which determine the lower calibration point.

Minimum Value: -9999999
Default Value: 100.0

Maximum Value: 9999999
Units: EU/Tm

\section*{CP-278 ExtLSMinVolts}

External Line Speed Minimum Volts (CP-278) is part of the scale factor setup for an external Line Speed analog signal source. This minimum volts, together with LineSpdMin (CP-279), determines the lower point of the calibration. See also CP-276 and CP-277 which determine the upper calibration point.

\author{
Minimum Value: -5.0 Maximum Value: 5.0 \\ Default Value: 0.0 \\ Units: Volts
}

\section*{CP-279 Ext LS Min}

External Line Speed at Minimum Volts (CP-279) is part of the scale factor setup for an external Line Speed analog signal source. This speed, in Web EU/Tm units selected by UnitPrs Sel (CP-208), together with ExtLSMinVolts (CP278), determines the lower point of the calibration. See also CP-276 and CP-277 which determine the upper calibration point.
\begin{tabular}{ll} 
Minimum Value: -9999999 & Maximum Value: 9999999 \\
Default Value: 0.0 & Units: EU/Tm
\end{tabular}

\section*{CP-280 UwndCO Mode}

Unwind Control Output Mode (CP-280) affects the range of Control Output (SigU) analog signal sent out to the Unwind axis. Unipolar mode issues only one polarity output, and assumes the axis drive is either not capable of reverse direction, or the user has chosen to never command it in a reverse direction. The sign ( \(+/-\) ) of this signal typically is "+"=fwd, and "-"=reverse, but the controller may be configured (UwndCO Plrty CP-282), or may have learned during setup, that the inverse polarity may be needed, as machines may vary in regard to which rotation direction is called forward. Bipolar mode allows both " + " and " - " signal polarities as needed for both forward and reverse operation. Bipolar allows reversal by discrete input LineSpeedReverse (LSRvs), or by accepting negative Line Speed Setpoints. Unipolar Reversible is similar to Unipolar, but will allow a reverse direction operation via the discrete input LineSpeedReverse (LSRvs), triggered by a relay that is wired to simultaneously give a reverse direction input command directly to the axis drive device itself (typically an AC Inverter). The controller will issue its normal output signal, but will expect the axis to actually rotate the other way, and will expect the quadrature encoder to confirm that reversed direction. Unipolar Brake is similar to Unipolar operation, but assumes the device physically operating the axis is a brake, rather than a motor or clutch. The control output signal is reverse sloped since brakes are assummed to apply more brake action, causing slower speed, as the signal increases in magnitude. Further a brake will apply least brake action, causing the web to be pulled off at a faster speed, when zero volts is applied. Thus brake mode is limited to the Unwind axis.
\[
\begin{aligned}
& 4=\text { Unipolar Brake } \\
& 3=\text { Unipolar Reversible } \\
& 2=\text { Bipolar (default) } \\
& 1=\text { Unipolar }
\end{aligned}
\]

Minimum Value: 1
Default Value: 2

Maximum Value: 4
Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-281 UwndCOMax Volts}

Unwind Control Output Maximum Volts (CP-281) sets the upper limit on the voltage sent to the Unwind axis drive. Bipolar operation assumes plus or minus this value. It should be set equal, or lower, than the input specifications of the Unwind axis drive. This value, in conjunction with Uwnd MaxRPM (CP-329), affects the feedforward term Uwnd Kff (CP-324).

\author{
Minimum Value: 0.1 \\ Maximum Value: 15 \\ Default Value: 10.0 \\ Units: Volts
}

\section*{CP-282 UwndCO Plrty}

Unwind Control Output Polarity (CP-282) determines whether a positive, or negative, signal voltage will operate the Unwind Axis in the forward direction, under the most basic normal operation. Actual direction may be temporarily different due to Overwrap/Underwrap selections.
\(2=\operatorname{Negated}(\) neg=fwd \()\)
\(1=\operatorname{Normal}(\) pos=fwd \()(\) default \()\)
\(\begin{array}{ll}\text { Minimum Value: } 1 & \text { Maximum Value: } 2 \\ \text { Default Value: } & \text { Units: Coded }\end{array}\)

\section*{CP-283 UwndCO Offset}

Unwind Control Output Offset (CP-283) adjusts for small variations in the specifications of certain IC devices on this particular controller board. Usually a very small number, it serves to true up the 0 volts end point of the output voltage scale. It is preset at the factory, and should not need field adjustments.
\[
\begin{array}{ll}
\text { Minimum Value: -1.00 } & \text { Maximum Value: } 1 \\
\text { Default Value: } 0 & \text { Units: Volts }
\end{array}
\]

\section*{CP-285 WindCO Mode}

Wind Control Output Mode (CP-285) affects the range of Control Output (SigW) analog signal sent out to the Wind axis. Unipolar mode issues only one polarity output, and assumes the axis drive is either not capable of reverse direction, or the user has chosen to never command it in a reverse direction. The sign ( \(+/-\) ) of this signal typically is " + "=fwd, and "-"=reverse, but the controller may be configured (WindCO Plrty CP-287), or may have learned during setup, that the inverse polarity may be needed, as machines may vary in regard to which rotation direction is called forward. Bipolar mode allows both " + " and " - " signal polarities as needed for both forward and reverse operation. Bipolar allows reversal by discrete input LineSpeedReverse (LSRvs), or by accepting negative Line Speed Setpoints. Unipolar Reversible is similar to Unipolar, but will allow a reverse direction operation via the discrete input LineSpeedReverse (LSRvs), triggered by a relay that is wired to simultaneously give a reverse direction input command directly to the axis drive device itself (typically an AC Inverter). The controller will issue its normal output signal, but will expect the axis to actually rotate the other way, and will expect the quadrature encoder to confirm that reversed direction.
\(3=\) Unipolar Reversible
\(2=\) Bipolar (default)
\(1=\) Unipolar
\(\begin{array}{ll}\text { Minimum Value: } 1 & \text { Maximum Value: } 3 \\ \text { Default Value: } 2 & \text { Units: Coded }\end{array}\)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-286 WindCOMax Volts}

Wind Control Output Maximum Volts (CP-286) sets the upper limit on the voltage sent to the Wind axis drive. Bipolar operation assumes plus or minus this value. It should be set equal to, or lower than, the input specifications of the Wind axis drive. This value, in conjunction with Wind MaxRPM (CP-329), affects the feedforward term Wind Kff (MP-33).

Minimum Value: \(0.1 \quad\) Maximum Value: 15
Default Value: 10.0 Units: Volts

\section*{CP-287 WindCO Plrty}

Wind Control Output Polarity (CP-287) determines whether a positive, or negative, signal voltage will operate the Wind Axis in the forward direction, under the most basic normal operation. Actual direction may be temporarily different due to Overwrap/Underwrap selections.
\[
\begin{aligned}
& 2=\operatorname{Negated}(\text { neg }=\text { fwd }) \\
& 1=\operatorname{Normal}(\text { pos=fwd })(\text { default })
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 2 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-288 WindCO Offset}

Wind Control Output Offset (CP-288) adjusts for small variations in the specifications of certain IC devices on this particular controller board. Usually a very small number, it serves to true up the 0 volts endpoint of the output voltage scale. It is preset at the factory, and should not need field adjustments.
\begin{tabular}{ll} 
Minimum Value: -1.00 & Maximum Value: 1 \\
Default Value: 0.00 & Units: Volts
\end{tabular}

\section*{CP-300 Ref Ramps}

The acceleration rate for the application selected are determined by the Acl Tm RUN (CP-301) and the Ref Ramps (CP300). The deceleration rate (from a faster speed to a slower speed) for the application selected, are determined by the Dcl Tm RUN (CP-303) and the Ref Ramps (CP-300).

Minimum Value: 0.001
Default Value: 100

Maximum Value: 9999999
Units: EU/Tm

\section*{CP-301 Acl Tm RUN}

Acceleration Time RUN (CP-301) is the time that it takes to accelerate from 0 to the Ref Ramps (CP-300). Time is consistant with Ref Ramps (CP-300) and Acl Rt RUN (CP-302).

Minimum Value: 0.5
Default Value: 10.00

Maximum Value: 3600
Units: Seconds

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-302 Acl Rt RUN}

Acceleration Rate RUN (CP-302) is the acceleration rate that the speed changes from 0 to the Ref Ramps (CP-300). Rate is consistant with Ref Ramps (CP-300) and Acl Tm RUN (CP-301).
Minimum Value: 0
Maximum Value: 9999999
Default Value: 10.00
Units: Web EU/Tm/Sec

\section*{CP-303 Dcl Tm RUN}

Deceleration Time RUN (CP-303) is the time that it takes to decelerate from Ref Ramps (CP-300) speed to 0. Time is consistant with Ref Ramps (CP-300) and Dcl Rt RUN (CP-304).

Minimum Value: \(0.5 \quad\) Maximum Value: 3600
Default Value: 10.00 Units: Seconds

\section*{CP-304 Del Rt RUN}

Deceleration Rate RUN (CP-304) is the deceleration rate that the speed changes from Ref Ramps (CP-300) speed to 0 , while operating in App Select (CP-202) 1, 2, 4 or 5. Rate is consistant with Ref Ramps (CP-300) and Dcl Tm RUN (CP-303).

Minimum Value: \(0 \quad\) Maximum Value: 9999999
Default Value: 10.00 Units: Web EU/Tm/Sec

\section*{CP-307 Dcl Tm HStp}

Deceleration Time H-Stop (CP-307) is the time, in seconds, that it takes to decelerate from the Ref Ramps (CP-300) speed to 0 , during H-Stop.

Minimum Value: \(0.5 \quad\) Maximum Value: 3600
Default Value: 10.00 Units: Seconds

\section*{CP-308 Dcl Rt HStp}

Deceleration Rate H-Stop (CP-308) is the deceleration rate that is used for H-Stop.
Minimum Value: \(0 \quad\) Maximum Value: 9999999
Default Value: 10.00 Units: Web EU/Tm/Sec

\section*{CP-311 Acl Tm Drct}

Acceleration Time Direct (CP-311) is the time, in seconds, that it takes to accelerate from 0 to the UwndCOMaxVolts (CP-281) and/or WindCOMaxVolts (CP-286) voltage, while operating in the Direct Mode.

Minimum Value: \(0 \quad\) Maximum Value: 3600
Default Value: 3.000
Units: Seconds

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-312 Dcl Tm Drct}

Deceleration Time Direct (CP-312) is the time, in seconds, that it takes to decelerate from the UwndCOMaxVolts (CP\(281)\) and/or WindCOMaxVolts (CP-286) voltage to 0 volts, while operating in the Direct Mode.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 3600 \\ Default Value: 3.000 Units: Seconds
}

\section*{CP-321 Jog Loop Mode}

Jog Loop Mode (CP-321) identifies the type of control loop (see list below) that is used during Jog.
\[
\begin{aligned}
& 1=\text { Velocity Loop }(\text { default }) \\
& 0=\text { Open Loop }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 1 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-323 Uwnd Kp-p}

Unwind Kp-p (CP-323) is the proportional gain constant applied to the position error when the unwind axle is in position hold. The position hold gain may need to be different than the Uwnd \(\mathrm{Kp}(\mathrm{CP}-325)\) under run conditions.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 32767 \\ Default Value: 2 Units: Constant
}

\section*{CP-325 Uwnd Kp}

Unwind \(\mathrm{Kp}(\mathrm{CP}-325)\) is the proportional gain constant for the PID loop. An increase in Unwind Kp (CP-325) creates a quicker response and a smaller error. However, a value that is too large will cause instability. If the integral term is used, (i.e., Unwind Ki not equal to zero) then a nonzero Unwind Kp can actually improve the loop response and decrease the overshoot to some extent.

Minimum Value: \(0 \quad\) Maximum Value: 30000
Default Value: 400 Units: Constant

\section*{CP-326 Uwnd Ki}

Unwind \(\mathrm{Ki}(\mathrm{CP}-326)\) is the integral constant for the PID loop. Integral action provides for zero steady state error. Increase Unwind Ki (CP-326) for a faster convergence to zero error. However, a value that is too large will cause instability.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 30000 \\
Default Value: 40 & Units: Constant
\end{tabular}

\section*{CP-327 Uwnd Kd}

Unwind Kd (CP-327) is the derivative constant for the PID loop. Derivative action attempts to damp out overshoot. Its effect is highly dependent on Unwind Kp and Unwind Ki, but, generally, too large a value causes instability.

Minimum Value: \(0 \quad\) Maximum Value: 30000
Default Value: 200 Units: Constant
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-328 Uwnd DerivThd}

Unwind Derivative Threshold (CP-328) is the minimum speed error that is required before the derivative term in the PID algorithm gains influence. Increase the Unwind Derivative Threshold to prevent the derivative term from acting on signal noise.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 99999 \\
Default Value: 5 & Units: Roll RPM
\end{tabular}

\section*{CP-329 Uwnd MaxRPM}

Unwind Maximum Roll RPM (CP-329) describes the estimated maximum Unwind roll RPM, after consideration of max motor RPM, and motor-to-roll gear ratios. This value, in conjunction with UwndCOMax Volts (CP-281), affects the feedforward term, Uwnd Kff (MP-23). It may be adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Minimum Value: \(0.1 \quad\) Maximum Value: 999999
Default Value: 2000 Units: Roll RPM

\section*{CP-331 Dancer Auth}

Dancer Authority (CP-331) sets a maximum, or upper limit, on the correction applied to the dancer trimmed axis by reason of displacement of the dancer from its target position. The Dancer Trim (MP-84), a product of DncrCtnt Err (MP-83) and Dancer Gain (CP-332), is checked against this limit before it is used to adjust the dancer trimmed axis.

Minimum Value: \(0 \quad\) Maximum Value: 999999
Default Value: 100 Units: EU/Tm

\section*{CP-332 Dancer Gain}

Dancer Gain (CP-332) adjusts the response to dancer content error. High gain can cause instability. Low gain can cause sluggish correction action.

Minimum Value: 0
Maximum Value: 99999
Default Value: 50
Units: (EU/Tm)/(Dancer Error EU)

\section*{CP-333 Wind Kp-p}

Wind Kp-p (CP-333) is the proportional gain constant applied to the position error when the wind axle is in position hold. The position hold gain may need to be different than the Wind Kp (CP-335) under run conditions.

Minimum Value: \(0 \quad\) Maximum Value: 32767
Default Value: 2 Units: Constant

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-335 Wind Kp}

Wind \(\mathrm{Kp}(\mathrm{CP}-335)\) is the proportional gain constant for the PID loop. An increase in Wind \(\mathrm{Kp}(\mathrm{CP}-335)\) creates a quicker response and a smaller error. However, a value that is too large will cause instability. If the integral term is used, (i.e., Wind Ki (CP-336) not equal to zero) then a nonzero Wind Kp (CP-335) can actually improve the loop response and decrease the overshoot to some extent.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 30000 \\ Default Value: 400 Units: Constant
}

\section*{CP-336 Wind Ki}

Wind \(\mathrm{Ki}(\mathrm{CP}-336)\) is the Integral constant for the PID loop. Integral action provides for zero steady state error. Increase Wind \(\mathrm{Ki}(\mathrm{CP}-336)\) for a faster convergence to zero error. However, a value that is too large will cause instability.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 30000 \\
Default Value: 40 & Units: Constant
\end{tabular}

\section*{CP-337 Wind Kd}

Wind Kd (CP-337) is the derivative constant for the PID loop. Derivative action attempts to damp out overshoot. Its effect is highly dependent on Wind Kp and Wind Ki, but, generally, too large a value causes instability.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 30000 \\
Default Value: 200 & Units: Constant
\end{tabular}

\section*{CP-338 Wind DerivThd}

Wind Derivative Threshold (CP-338) is the minimum speed error that is required before the derivative term in the PID algorithm gains influence. Increase the Wind DerivThd (CP-338) to prevent the derivative term from acting on signal noise.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 99999 \\ Default Value: \(5 \quad\) Units: Roll RPM
}

\section*{CP-339 WindMaxRPM}

Wind Maximum RPM (CP-339) describes the estimated maximum Wind Roll RPM, after consideration of max motor RPM, and motor-to-roll gear ratios. This value, in conjunction with WindCOMax Volts (CP-286), affects the feedforward term, Wind Kff (MP-33). It may be adjusted automatically during feedforward Kff Auto En (CP-344) mode.

Minimum Value: \(0.1 \quad\) Maximum Value: 999999
Default Value: \(2000 \quad\) Units: Roll RPM

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-340 Cntrl Latch}

Control Latch (CP-340) allows you to set or "latch in" certain operating conditions that are specific to the CX-1102. Enter "1" in the bit that corresponds to the control condition(s) that you want active (see graphic below). The condition(s) will remain active till the bit is reset to 0 . These requests are logically OR'd with the PLC bits that set the same condition. In the sample below, "Open Loop" is active:


Minimum Value: \(0 \quad\) Maximum Value: 255
Default Value: \(0 \quad\) Units: Coded

\section*{CP-341 Loop Update}

Loop Update (CP-341) is the time interval between the Control Output (SigU/SigW) calculations. This interval sets the sampling rate of the PID control loop.
\[
\begin{aligned}
& 3=100 \mathrm{mSec} \text { Update } \\
& 2=10 \mathrm{mSec} \text { Update } \\
& 1=2 \mathrm{mSec} \text { Update (default) }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 3 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-342 KffAdjUpdt}

Kff Adjust Update (CP-342) sets the sampling period for the Kff calculation when it is enabled. KffAdjUpdt (CP-342) is the time interval between each new Kff calculation and the automatic store to the Kff parameters depending on whether Kff Auto En (CP-344) is enabled.
\[
\begin{aligned}
& 6=10 \text { Min Update } \\
& 5=1 \mathrm{Min} \text { Update } \\
& 4=10 \mathrm{Sec} \text { Update } \\
& 3=1 \mathrm{Sec} \text { Update (default) } \\
& 2=500 \mathrm{mSec} \text { Update } \\
& 1=250 \mathrm{mSec} \text { Update }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 6 \\
Default Value: 3 & Units: Coded
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-343 KffAutoSel}

Kff Automatic Select (CP-343) selects the axis which will have its Kff value automatically adjusted during RUN at the KffAdjUpdt (CP-342) interval when enabled via KffAuto En (CP-344).
\[
\begin{aligned}
& 3=\text { Unwind \& Wind (default) } \\
& 2=\text { Wind } \\
& 1=\text { Unwind }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 3 \\
Default Value: 3 & Units: Coded
\end{tabular}

\section*{CP-344 Kff Auto En}

Kff Automatic Enable (CP-344) enables the CX-1102 automatic adjustment of Uwnd Kff (MP-23) and Wind Kff (MP33) at the specified KffAdjUpdt (CP-342) interval in RUN with the loop closed.
\[
\begin{aligned}
& 1=\mathrm{ON}=\text { Enabled } \\
& 0=\mathrm{OFF}=\text { Disabled (default) }
\end{aligned}
\]
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 1 \\ \text { Default Value: } 0 & \text { Units: Coded }\end{array}\)

\section*{CP-345 DncrMinDelta}

Dancer Minimum Delta (CP-345) sets the smallest dancer movement that will be accepted for diameter calculations. Calculating diameter from extremely small movement can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large movement, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.
\(\begin{array}{ll}\text { Minimum Value: } 0.01 & \text { Maximum Value: } 99999 \\ \text { Default Value: } 0.05 & \text { Units: Inches }\end{array}\)

\section*{CP-346 UwndMinDelta}

Unwind Minimum Delta (CP-346) sets the smallest amount of Unwind roll rotation that will be accepted for diameter calculations. Calculating diameter from extremely small rotations can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large rotation, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.

Minimum Value: 0.001 Maximum Value: 99999
Default Value: 0.1 Units: Rotations

\section*{CP-347 WindMinDelta}

Wind Minimum Delta (CP-347) sets the smallest amount of Wind roll rotation that will be accepted for diameter calculations. Calculating diameter from extremely small rotations can introduce diameter error, resulting in incorrect line speeds. However, waiting for a large rotation, while improving diameter calulation accuracy, can cause a cyclic action in the dancer position as it drifts off, and is then quickly corrected.

Minimum Value: 0.001 Maximum Value: 99999
Default Value: 0.1 Units: Rotations
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-348 Sig Fltr Sel}

Signal Filter Select (CP-348) selects the signal to route through a low pass filter. The effect is visible on the speed value. Only one filter routine is available, and should be used on the most erratic input signal. While the damped signal will permit smoother control action, note that it will introduce a small delay in response to the original signal variations.
\[
\begin{aligned}
& 4=\text { Analog In } 2 \\
& 3=\text { Frequency In } 2 \\
& 2=\text { Analog In } 1 \\
& 1=\text { Frequency In } 1 \\
& 0=\text { Not Used (default) }
\end{aligned}
\]
Minimum Value: 0
Maximum Value: 4
Default Value: \(0 \quad\) Units: Coded

\section*{CP-349 SigFltrTmConst}

Signal Filter Time Constant (CP-349) sets the time constant in milliseconds for the signal filter.
Minimum Value: 2
Maximum Value: 500
Default Value: 10
Units: Milliseconds

\section*{CP-350 UwndMinDia}

Unwind Minimum Diameter (CP-350) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such as slack web or out-of-round rolls.
\(\begin{array}{ll}\text { Minimum Value: } 0.001 & \text { Maximum Value: } 99999 \\ \text { Default Value: } 12.0 & \text { Units: Inches }\end{array}\)
Default Value: \(12.0 \quad\) Units: Inches

\section*{CP-351 UwndMaxDia}

Unwind Maximum Diameter (CP-351) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

Minimum Value: 0.001 Maximum Value: 100000
Default Value: 72
Units: Inches

\section*{CP-352 WindMinDia}

Wind Minimum Diameter (CP-352) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

Minimum Value: 0.001
Default Value: 12.0

Maximum Value: 99999
Units: Inches

\section*{CP-353 WindMaxDia}

Wind Maximum Diameter (CP-353) sets a boundary for calculated diameters. It aids in the rejection of false diameter calculations caused by erratic machine conditions such a slack web or out-of-round rolls.

Minimum Value: 0.001
Default Value: 72

Maximum Value: 100000
Units: Inches

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-355 Ramp Thd}

When the difference between the LineSpd SRef (MP-41) and the LineSpd RRef (MP-42) is greater than Ramp Thd (CP355), the ramp will work normally. When the difference between the LineSpd SRef (MP-41) and the LineSpd RRef (MP-42) is less than or equal to Ramp Thd (CP-355), the ramp will be bypassed. This avoids ramp delays for small line speed changes but still allows a ramp for large line speed or for large Line Spd SP (CP-210) changes.
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 999999 \\ \text { Default Value: } 1.0 & \text { Units: EU/Tm }\end{array}\)

\section*{CP-356 UwndTrim Auth}

The trim contribution to the DAC output is limited to positive and negative Unwind Trim Authority (CP-356).
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 100 \\
Default Value: 100.0 & Units: \% of CP-281
\end{tabular}

\section*{CP-357 UwndIntgrl Lmt}

The integral contribution to the trim term is limited to the positive and negative Unwind Integral Limit (CP-357). UwndIntgrl Lmt (CP-357) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 100 \\
Default Value: 100.0 & Units: \% of CP-281
\end{tabular}

\section*{CP-358 WindTrim Auth}

The trim contribution to the DAC output is limited to positive and negative Wind Trim Authority (CP-358).
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 100 \\
Default Value: 100.0 & Units: \% of CP-286
\end{tabular}

\section*{CP-359 WindIntgrl Lmt}

The integral contribution to the trim term is limited to the positive and negative Wind Integral Limit (CP-359). WindIntgrl Lmt (CP-359) can decrease the effects of integral windup or it can limit the maximum effect of the integral term.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 100 \\
Default Value: 100.0 & Units: \% of CP-286
\end{tabular}

\section*{CP-361 LoadDiaCalcEn}

When Load Diameter Calculation Enable (CP-361) is enabled, the CX-1102 will calculate the diameter of the dancer trimmed roll, and estimate the diameter of the other roll, during a Load sequence. If LoadDiaCalcEn (CP-361) is disabled, the initial dancer trimmed roll diameter must be preset prior to running. See UnwinDiaPrst (CP-364) and WindDiaPrst (CP-365) for more information about presetting roll diameters.
\[
\begin{aligned}
& 1=\mathrm{ON}=\text { Enabled (default) } \\
& 0=\mathrm{OFF}=\text { Disabled }
\end{aligned}
\]

Minimum Value: 0
Default Value: 1

Maximum Value: 1
Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-364 UwndDiaPrst}

Unwind Diameter Preset (CP-364) defines a known diameter value that can be forced into UwndEstDia (MP-07) on demand. For example, it can be used to pre-set a full roll diameter when loading a new supply roll. The PLC code can control this action via wired input, or by monitoring for an internal operational condition. It also defines the nip roll diameter on machines with fixed nip rolls.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 99999 \\ Default Value: \(48 \quad\) Units: Diameter EU
}

\section*{CP-365 WindDiaPrst}

Wind Diameter Preset (CP-365) defines a known diameter value that can be forced into WindEstDia (MP-17) on demand. For example, it can be used to pre-set an empty roll core diameter after off loading a full takeup roll. The PLC code can control this action via wired input, or by monitoring for an internal operational condition. It also defines the nip roll diameter on machines with fixed nip rolls.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 99999 \\ Default Value: 48 Units: Diameter EU
}

\section*{CP-366 UwndCtntPrst}

Unwind Content Preset (CP-366) defines a known roll content (total length on the roll) value that can be forced into UwndEstCtnt (MP-06) on demand. For example, it can be used to pre-set a full roll content when loading a new supply roll. The PLC code can control this action via wired input, or by monitoring for an internal operational condition. If the Preset value is larger than the UwndCtntRO (CP-368), then UwndEstCtnt (MP-06) will display the Preset Value minus the Rollover value.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 9999999 \\
Default Value: 10000 & Units: Web EU
\end{tabular}

\section*{CP-367 WindCtntPrst}

Wind Content Preset (CP-367) defines a known roll content (total length on the roll) value that can be forced into WindEstCtnt (MP-16) on demand. For example, it can be used to pre-set content to zero content when loading a new empty core on the Wind axis. The PLC code can control this action via wired input, or by monitoring for an internal operational condition. If the Preset value is larger than the WindCtntRO (CP-369), then WindEstCtnt (MP-16) will display the Preset Value minus the Rollover value.

Minimum Value: \(0 \quad\) Maximum Value: 999669
Default Value: 10000 Units: Web EU

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-368 UwndCtntRO}

Unwind Content Rollover (CP-368) defines an upper limit to the amount of Unwind roll content that will be accommodated in the totalizing content counter, UwndEstCtnt (MP-06). Note that the Unwind is presumed to be a payoff roll, resulting in a roll content value that decrements downward during forward travel. When this content register, UwndEstCtnt (MP-06), decrements down to zero, it will rollover, restoring its value to the amount shown in UwndCtntRO (CP-368). It will again decrement downward upon further forward motion. If the web reverses motion, with the Unwind station taking up web material, then the content register, UwndEstCtnt (MP-06), will increment and ultimately rollover to zero upon reaching this upper rollover point. A PLC bit is set at each rollover action, for use in counting, alarms, or other action. In most applications, the UwndEstCtnt (MP-06) is used, in conjunction with UwndCtntPrst (CP-366) to predict an end-of-roll condition. However, the rollover point UwndCtntRO (CP-368), is set at more than a full roll's content, and is never reached. In these cases the rollover point acts as a backup protection to prevent content registers from incrementing indefinitely, causing register overflow.

\author{
Minimum Value: 0 \\ Default Value: 10000 \\ Maximum Value: 9999999 \\ Units: Web EU
}

\section*{CP-369 WindCtntRO}

Wind Content Rollover (CP-369) defines an upper limit to the amount of Wind roll content that will be accommodated in the totalizing content counter, WindEstCtnt (MP-16). Note that the Wind is presumed to be a take-up roll, resulting in a roll content value that increments upward during forward travel. When this content register, WindEstCtnt (MP-16), increments up to this limit (CP-369), it will rollover, restoring its value to zero. It will again increment upward upon further forward motion. If the web reverses motion, with the Wind station paying off web material, then the content register, WindEstCtnt (MP-16), will decrement and ultimately rollover to this upper limit upon reaching zero. A PLC bit is set at each rollover action, for use in counting, alarms, or other action. In most applications, the WindEstCtnt (MP-16) is used, in conjunction with WindCtntPrst (CP-367) to predict a near-full-roll condition. However, the rollover point (CP-369), is set at more than a full roll's content, and is never reached. In these cases the rollover point acts as a backup protection to prevent content registers from incrementing indefinitely, causing register overflow.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 9999999 \\ Default Value: 10000 Units: Web EU
}

\section*{CP-370 Zero Speed}

When the magnitude of the UwndRollRPM (MP-03) or WindRollRPM (MP-13) is less than or equal to Zero Speed (CP-370), the UwFb@0Spd bit (44) or WdFb@0Spd bit (54) in the PLC is set to " 1 ". This value, as well as the PLC bit condition, is used in other transparent internal calculations that are based on feedback information, and to determine when each roll is stopped.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 100000 \\
Default Value: 5.0 & Units: Roll RPM
\end{tabular}

\section*{CP-371 Max LS Alm}

Maximum Line Speed Alarm (CP-371) signals an over-speed condition. When the magnitude of the Line Speed (MP\(40)\) is greater than or equal to Max LS Alm (CP-371), then the HiLineSpd bit (30) in the PLC is set to " 1 ". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 9999999 \\
Default Value: 2000 & Units: EU/Tm
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-372 NO Resp Time}

When the Control Output (Sig) signal is greater than 1/16 UwndCOMax Volts (CP-281) and the UwndRollRPM (MP03 ) is less than Zero Ppd (CP-370) for longer than the No Response Time (CP-372), then the UwMtrNRsp bit (47) is set to " 1 ". When the Control Output (SigW) signal is greater than \(1 / 16\) WindCOMax Volts (CP-286) and the WindRollRPM (MP-13) is less than Zero Spd (CP-370) for longer than the No Response Time (CP-372), then the WdMtrNRsp bit (57) is set to " 1 ". If this scenario occurs, it is generally an indication that the feedback has been lost. It can also indicate that the drive is not enabled (or faulted out), that the Control Output (SigU) signal is not getting to the drive or that there may be a physical obstruction preventing motion.

\author{
Minimum Value: 0.010 Maximum Value: 600 \\ Default Value: 1.000 Units: Seconds
}

\section*{CP-373 UwndMaxRmp}

When either the feedback acceleration or the deceleration is greater than or equal to Unwind Maximum Ramp (CP373), then the UwMxAcDcl bit (46) in the PLC is set to " 1 ". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 9999999 \\ Default Value: 2000 \\ Units: EU/Tm/Sec
}

\section*{CP-374 WindMaxRmp}

When either the feedback acceleration or the deceleration is greater than or equal to Wind Maximum Ramp (CP-374), then the WdMxAcDcl bit (56) in the PLC is set to " 1 ". You can output this alarm for indication or action, or you can use the alarm logically in the PLC.

Minimum Value: \(0 \quad\) Maximum Value: 9999999
Default Value: 2000 Units: EU/Tm/Sec

\section*{CP-378 Std AIm Mask}

The Standard Alarm Mask (CP-378) allows you to mask out specific alarms so that they will not cause the 'Alm' indicator to flash (in the lower left-hand corner of the CX-1102 screen) by entering a " 0 " in the corresponding bit position (see figure below). You can also activate any of these alarm conditions by entering a " 1 " in the corresponding bit position.


Minimum Value: 00000000
Default Value: 00000000

Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-379 CustAlm Msk}

Custom Alarm Mask (CP-379) allows you to mask out the compare results so that they will not cause the 'Alm' indicator to flash (in the lower left-hand corner of the CX-1102 screen) by entering a " 0 " in the corresponding bit position (see figure below). You can also activate any of these compare conditions by entering a " 1 " in the corresponding bit position.


Minimum Value: 00000000
Default Value: 00000000

Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-380 Cmpr1 Parm}

Enter a Monitor Parameter code in Compare 1 Parameter (CP-380) that will act on the value in Cmprl Val (CP-392), by using the comparison type that you entered in Cmp1 Type (CP-386). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr1 Out bit (60) in the PLC to " 1 ", which can be used to trigger a user defined indicator.
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 199 \\
Default Value: 12 (WindEncRPM) & Units: Parameter Code
\end{tabular}

NOTE: The following Monitor Parameters are not available for the Cmpr1 Parm (CP-380), Cmpr2 Parm (CP-381), Cmpr3 Parm (CP-382) or Cmpr4 Parm (CP-383):
\begin{tabular}{|c|c|}
\hline MP-52 .......... InvalidBlks & MP-114 ......... PLC 47-40 \\
\hline MP-53 .......... Misc Status & MP-115 ......... PLC 55-48 \\
\hline MP-54 ........... Std Alarms & MP-116 ......... PLC 63-56 \\
\hline MP-55 ....... Custom Alms & MP-117 ......... PLC 71-64 \\
\hline MP-56 ............. Run LED & MP-118 ......... PLC 79-72 \\
\hline MP-57 .......... Alarm LED & MP-119 ......... PLC 87-80 \\
\hline MP-58 ........ Dancer State & MP-120 ......... PLC 95-88 \\
\hline MP-59 .......... Setup State & MP-121 ..... PLC 107-100 \\
\hline MP-60 ........... Uwnd Dirn & MP-122 ..... PLC 115-108 \\
\hline MP-61 ............. Wind Dir & MP-123 ..... PLC 123-116 \\
\hline MP-70 ............. Wrap Pty & MP-124 ..... PLC 131-124 \\
\hline MP-71 .......... SigPolarity & MP-125 ..... PLC 139-132 \\
\hline MP-72 ....... UwndCntrlLp & MP-126 ..... PLC 147-140 \\
\hline MP-73 ........ WindCntlLp & MP-127 ..... PLC 155-148 \\
\hline MP-90 ... SerCom Char In & MP-128 ..... PLC 163-156 \\
\hline MP-91 ........ SerCom Errs & MP-129 ..... PLC 171-164 \\
\hline MP-94 ........... ROM Test & MP-130 ..... PLC 179-172 \\
\hline MP-95 .......... SRAM Test & MP-131 ..... PLC 187-180 \\
\hline MP-96 ...... NV RAM Test & MP-132 ..... PLC 195-188 \\
\hline MP-97 ........... MODEL \# & MP-133 ..... PLC 203-196 \\
\hline MP-98 ........... RELEASE & MP-134 ..... PLC 211-204 \\
\hline MP-99 .......... REVISION & MP-135 ..... PLC 219-212 \\
\hline MP-100 ............... DI 7.. 0 & MP-150 .......... Last Reset \\
\hline MP-101 ............. DI \(15 . .8\) & MP-151 ......... Misc Intrpt \\
\hline MP-102 ............. DO 7.. 0 & MP-152 ...... Device Alms \\
\hline MP-103 KeyPad Lockout & MP-153 ....... PC at Intrpt \\
\hline MP-108 .. PLC Mon 1 Val & MP-156 .... Mem Err Cntr \\
\hline MP-109 .. PLC Mon 2 Val & MP-157 ... WatchDogCntr \\
\hline MP-110 .......... PLC 15-8 & MP-158 ... MiscIntrptCntr \\
\hline MP-111 ........ PLC 23-16 & MP-168 ... AnlgCal Ref A \\
\hline MP-112 ........ PLC 31-24 & MP-169 ... AnlgCal Ref B \\
\hline MP-113 ..... PLC & \\
\hline
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-381 Cmpr2 Parm}

Enter a Monitor Parameter code in Compare 2 Parameter (CP-381) that will act on the value in Cmpr2 Val (CP-393), by using the comparison type that you entered in Cmp2 Type (CP-387). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr2 Out bit (61) in the PLC to " 1 ", which can be used to trigger a user defined indicator.

\author{
Minimum Value: \(1 \quad\) Maximum Value: 199 \\ Default Value: 22 (UwndRR Err) Units: Parameter Code
}

NOTE: Refer to the "NOTE" in CP-380.

\section*{CP-382 Cmpr3 Parm}

Enter a Monitor Parameter in Compare 3 Parameter (CP-382) that will act on the value in Cmpr3 Val (CP-394), by using the comparison type that you entered in Cmp3 Type (CP-388). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr3 Out bit (62) in the PLC to " 1 ", which can be used to trigger a user defined indicator.
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 199 \\
Default Value: 32 (WindRR Err) & Units: Parameter Code
\end{tabular}

NOTE: Refer to the "NOTE" in CP-380.

\section*{CP-383 Cmpr4 Parm}

Enter a Monitor Parameter in Compare 4 Parameter (CP-382) that will act on the value in Cmpr4 Val (CP-395), by using the comparison type that you entered in Cmpr4 Type (CP-389). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr4 Out bit (63) in the PLC Programming screen to " 1 ", which can be used to trigger a user defined indicator.
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 199 \\
Default Value: 17 (WindEstDia) & Units: Parameter Code
\end{tabular}

NOTE: Refer to the "NOTE" in CP-380.

\section*{CP-386 Cmpr1 Type}

Use Cmpr1 Type (CP-386) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr1 Parm (CP-380) to the value that you entered in Cmpr1 Val (CP-392). If you require a comparison that is not listed, then set the Cmpr1 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than" (<) use "NOT" Magnitude greater than or equal to ( \(>=\) ).
```

6 = 'mag =' if Magnitude of parm selected by Cmpr1 Parm = Cmpr1 Val, Cmpr1 Out = 1
5 = 'mag >=' if Magnitude of parm selected by Cmpr1 Parm >= Cmpr1 Val, Cmpr1 Out = 1
4 = 'mag >' if Magnitude of parm selected by Cmpr1 Parm > Cmpr1 Val, Cmpr1 Out = 1
3 ' '=' if value of parm selected by Cmpr1 Parm = Cmpr1 Val, Cmpr1 Out = 1
2 = '>=' if value of parm selected by Cmpr1 Parm >= Cmpr1 Val, Cmpr1 Out = 1
1 = '>' if value of parm selected by Cmpr1 Parm > Cmpr1 Val, Cmpr1 Out = 1

```
Minimum Value: \(1 \quad\) Maximum Value: 6
Default Value: \(4 \quad\) Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-387 Cmpr2 Type}

Use Cmpr2 Type (CP-387) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr2 Parm, (CP-381) to the value that you entered in Cmpr2 Val (CP-393). If you require a comparison that is not listed, then set the Cmpr2 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than " (<) use "NOT" Magnitude greater than or equal to ( \(>=\) ).
```

6 = 'mag =' if Magnitude of parm selected by Cmpr2 Parm) = Cmpr2 Val, Cmpr2 Out = 1
5 = 'mag >=' if Magnitude of parm selected by Cmpr2 Parm) >= Cmpr2 Val, Cmpr2 Out = 1
4 = 'mag >' if Magnitude of parm selected by Cmpr2 Parm) > Cmpr2 Val, Cmpr2 Out = 1
3 = ' }=\mathrm{ ' if value of parm selected by Cmpr2 Parm) = Cmpr2 Val, Cmpr2 Out = 1
2 = '>=' if value of parm selected by Cmpr2 Parm) >= Cmpr2 Val, Cmpr2 Out = 1
1= '>' if value of parm selected by Cmpr2 Parm)> Cmpr2 Val, Cmpr2 Out = 1

```

Minimum Value: \(1 \quad\) Maximum Value: 6
Default Value: 4 Units: Coded

\section*{CP-388 Cmpr3 Type}

Use Cmpr3 Type (CP-388) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr3 Parm (CP-382) to the value that you entered in Cmpr3 Val (CP-394). If you require a comparison that is not listed, then set the Cmpr3 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Than" (<) use "NOT" Magnitude greater than or equal to(>=).
```

6 = 'mag =' if Magnitude of parm selected by Cmpr3 Parm) = Cmpr3 Val, Cmpr3 Out = 1
5 = 'mag >=' if Magnitude of parm selected by Cmpr3 Parm) >= Cmpr3 Val, Cmpr3 Out = 1
4 = 'mag >' if Magnitude of parm selected by Cmpr3 Parm) > Cmpr3 Val, Cmpr3 Out = 1
3 ' '=' if value of parm selected by Cmpr3 Parm) = Cmpr3 Val, Cmpr3 Out = 1
2 = '>=' if value of parm selected by Cmpr3 Parm) >= Cmpr3 Val, Cmpr3 Out = 1
1= '>' if value of parm selected by Cmpr3 Parm) > Cmpr3 Val, Cmpr3 Out = 1

```
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 6 \\
Default Value: 4 & Units: Coded
\end{tabular}

\section*{CP-389 Cmpr4 Type}

Use Cmpr4 ype (CP-388) to establish the type of comparison (see list below) that will compare the Monitor Parameter that you entered in Cmpr4 Parm (CP-383) to the value that you entered in Cmpr4 Val (CP-395). If you require a comparison that is not listed, then set the Cmpr4 Out bit in the PLC to "Ld Not". This programs the comparison type to become a "Not" statement For example, to program "Magnitude Less Then" (<) use "NOT" Magnitude greater than or equal to (>=).
```

$6=$ 'mag =' if Magnitude of parm selected by Cmpr4 Parm) $=$ Cmpr4 Val, Cmpr4 Out $=1$
$5=$ 'mag >=' if Magnitude of parm selected by Cmpr4 Parm) $>=$ Cmpr4 Val, Cmpr4 Out $=1$
$4=$ 'mag >' if Magnitude of parm selected by Cmpr4 Parm) > Cmpr4 Val, Cmpr4 Out =1
$3=$ ' $=$ ' if value of parm selected by Cmpr4 Parm) $=$ Cmpr4 Val, Cmpr4 Out $=1$
$2=$ ' $>=$ ' if value of parm selected by Cmpr4 Parm) $>=$ Cmpr4 Val, Cmpr4 Out $=1$
$1=$ ' $\gg \quad$ if value of parm selected by Cmpr4 Parm) > Cmpr4 Val, Cmpr4 Out $=1$
Minimum Value: $1 \quad$ Maximum Value: 6
Default Value: 5 Units: Coded

```

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-392 Cmpr1 Val}

Enter a value in Cmpr1 Val (CP-392) that will be compared to the Monitor Parameter in Cmpr1 Parm (CP-380), using the comparison type that you entered in Cmpr1 Type (CP-386). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr1 Out bit (60) in the PLC to " 1 ".

\author{
Minimum Value: -9999999 Maximum Value: 9999999 \\ Default Value: 2000 Units: same as the selected MP
}

\section*{CP-393 Cmpr2 Val}

Enter a value in Cmpr2 Val (CP-393) that will compared to the Monitor Parameter in Cmpr2 Parm (CP-381), using the comparison type that you entered in Cmpr2 Type (CP-387). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr2 Out bit (61) in the PLC screen to " 1 ".

Minimum Value: -9999999 Maximum Value: 9999999
Default Value: 200 Units: same as the selected MP

\section*{CP-394 Cmpr3 Val}

Enter a value in Cmpr3 Val (CP-394) that will be compared to the Monitor Parameter in Cmpr3 Parm (CP-382), using the comparison type that you entered in Cmpr3 Type (CP-388). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr3 Out bit (62) in the PLC to " 1 ".

Minimum Value: -9999999
Default Value: 200

Maximum Value: 9999999
Units: same as the selected MP

\section*{CP-395 Cmpr4 Val}

Enter a value in Cmpr4 Val (CP-395) that will be compared to the Monitor Parameter in Cmpr4 Parm (CP-383), using the boundary type that you entered in Cmpr4 Type (CP-389). If the comparison that is established by these three parameters is "true", then the PLC sets the Cmpr4 Out bit (63) in the PLC to " 1 ".

Minimum Value: -9999999 Maximum Value: 9999999
Default Value: 72
Units: same as the selected Monitor Parameter

\section*{CP-396 Copy Source 1}

Copy Source 1 (CP-396) identifies the CP or MP whose value is copied to Copy Dest 1 (CP-397) when a 0 to 1 transition occurs in the Data Copy 1 PLC bit (160).

Minimum Value: \(1 \quad\) Maximum Value: 667
Default Value: 230
Units: CP or MP

\section*{CP-397 Copy Dest 1}

Copy Dest 1 (CP-397) identifies the CP that takes on the value of the CP or MP identified by Copy Source 1 (CP-396) when a 0 to 1 transition occurs in the Data Copy 1 PLC bit (160).

Minimum Value: 201
Default Value: 230

Maximum Value: 667
Units: CP or MP

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-398 Copy Source 2}

Copy Source 2 (CP-398) identifies the CP or MP whose value is copied to Copy Dest 2 (CP-399) when a 0 to 1 transition occurs in the Data Copy 2 PLC bit (161).
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 667 \\
Default Value: 235 & Units: CP or MP
\end{tabular}

\section*{CP-399 Copy Dest 2}

Copy Dest 2 (CP-399) identifies the CP that takes on the value of the CP or MP identified by Copy Source 2 (CP-398) when a 0 to 1 transition occurs in the Data Copy 2 PLC bit (161).

Minimum Value: 201 Maximum Value: 667
Default Value: 235
Units: CP or MP

\section*{CP-400 Rmt Scroll}

In Remote Scroll (CP-400), enter the number of the Control Parameter that you want the Remote Scroll Up PLC bit (168) or the Remote Scroll Dn PLC bit (169) to increment or decrement by 1 least significant digit, at the Rmt Scroll Rate (CP-401). To disable the function, set Rmt Scroll (CP-400) to "0".

Minimum Value: \(0 \quad\) Maximum Value: 449
Default Value: 201 Units: Parameter CP

\section*{CP-401 Rmt Scroll Rate}

Remote Scroll Rate (CP-401) is the number of times per second, that the Control Parameter that you entered in Rmt Scroll (CP-400) is either incremented or decremented by 1 least significant digit, when the Remote Scroll Up PLC bit (168) or the Remote Scroll Dn PLC bit (169) is active.

Minimum Value: 1
Default Value: 10

Maximum Value: 100
Units: Increments/Decrements

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-402 DI 1 Shot}

Use the Digital Input 1 Shot (CP-402) to create a one scan pulse (one-shot) as the result of a high-to-low (open-toclosed) transition on any or all of the PLC dedicated inputs. To generate a 1 -scan pulse for an inactive high to an active low transition, enter a " 1 " in the bit location of corresponding digital input. In the example below, the " 1 " has been entered in Digital Input 9.


\author{
Minimum Value: 00000000 \\ Maximum Value: 11111111 \\ Default Value: 00000000 \\ Units: Coded
}

\section*{CP-403 DI Set}

Digital Input Set (CP-403) simulates an "ACTIVE" condition on any or all of the PLC dedicated Digital Inputs (DI 158). DI Set (CP-403) is logically OR'ed with the actual DI \(15 . .8\) (MP-101) bits to form the PLC 15-8 (MP-110) bits. The PLC \(15-8\) (MP-110) bits are used by the PLC logic. The value of DI Set (CP-403) will not effect the actual DI \(15 . .8\) (MP-101) value, rather, DI \(15 . .8\) (MP-101) reflects the present status of the actual inputs. Enter a " 1 " in a bit location to simulate an active condition on the corresponding input. DI 15 to DI 8 get mapped into Bit 7 to Bit 0 . Refer to the graphic below.


Minimum Value: 00000000
Default Value: 00000000

Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-405 PLC Monitor 1}

PLC Monitor 1 (CP-405) determines which PLC bit will be monitored in PLC Mon 1 Val (MP-108). The PLC Mon 1 Val (MP-108) displays the name of the bit rather than "PLC Mon 1 Val". To select a PLC bit to monitor, enter the number of the bit or by use the Scroll keys (^ or v) to scroll through the list. This bit can be monitored in any screen when the code select line set to PLC Mon 1 Val (MP-108).

\author{
Minimum Value: \(0 \quad\) Maximum Value: 223 \\ Default Value: 12 Units: PLC Bits
}

\section*{CP-406 PLC Monitor 2}

PLC Monitor 2 (CP-406) determines which PLC bit will be monitored in PLC Mon 2 Val (MP-109). The PLC Mon 2 Val (MP-109) displays the name of the bit rather than "PLC Mon 2 Val". To select a PLC bit to monitor, enter the number of the bit or by use the Scroll keys (^ or v) to scroll through the list. This bit can be monitored in any screen when the code select line set to PLC Mon 2 Val (MP-109).
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 223 \\
Default Value: 13 & Units: PLC Bits
\end{tabular}

\section*{CP-407 PLC Bit Set}

PLC Bit Set (CP-407) forces a PLC bit to be set to " 1 ". Enter the number of the bit that you want to set to " 1 ". PLC Bit Set (CP-407) tests your PLC program rather than commanding a direct operation. The bit is set prior to the PLC program execution but after all the inputs, comparisons, timers and counters have had their status bits set up. However, the PLC could clear this bit and unpredictable results can occur. Do not attempt to set a PLC bit that is controlled by an OUT instruction in the PLC program. If you need to force an output, use Diag DO in the diagnostics screen.
\[
\begin{array}{ll}
\text { Minimum Value: } 0 & \text { Maximum Value: } 223 \\
\text { Default Value: } 3 & \text { Units: PLC Bits }
\end{array}
\]

\section*{CP-408 PLC Bit Clear}

PLC Bit Clear (CP-408) forces a PLC bit to be reset to "0". Enter the number of the bit that you want to clear. PLC Bit Clear (CP-408) tests your PLC program rather than commanding a direct operation. The bit is cleared prior to the PLC program execution but after all the inputs, comparisons, timers and counters have set up their status bits. However, the PLC could set this bit and unpredictable results can occur. Do not attempt to clear a PLC bit that is controlled by an OUT instruction in the PLC program. If you need to force an output, use Diag DO in the DIG I/O Test diagnostics screen.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 223 \\
Default Value: 2 & Units: PLC Bits
\end{tabular}

\section*{CP-410 Tmr1 Delay}

Timer 1 Delay (CP-410) is the time, in seconds, from which Timer 1 becomes enabled (Tmr1 En bit going from 0 to 1) until the Tmr1 Out bit (24) in the PLC is activated \(=1\). When the Tmr1 En bit (124) returns to " 0 ", the Tmr1 Out bit (24) is reset to " 0 " and the delay-time is reset to " 0 ".

Minimum Value: 0
Default Value: 1.000

Maximum Value: 86400
Units: Seconds

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-411 Tmr1 on Tm}

Timer 1 on Time (CP-411) is the time, in seconds, from which Tmr 1 Out is activated (=1) until Tmr1 Out is deactivated (back to 0). When the Tmr1 En bit (124) returns to " 0 ", the Tmr1 Out bit (24) is reset \(=0\) and the on- time is reset to " 0 ". If you want Timer 1 on-time to be infinite ("On" until Tmr1 is disabled with Tmr1 En \(=0\) ), then enter a value of -1 into Tmr1 on Tm (CP-411).

\author{
Minimum Value: -1 Maximum Value: 86400 \\ Default Value: -1 Units: Seconds
}

\section*{CP-412 Tmr2 Delay}

Timer 2 Delay (CP-412) is the time in seconds from which Timer 2 becomes enabled (Tmr2 En bit going from 0 to 1) until the Tmr2 Out bit (25) in the PLC activated \(=1\). When the Tmr2 En bit (125) returns to " 0 ", the Tmr2 Out bit (25) is reset to " 0 " and the delay-time is reset to " 0 ".
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 86400 \\
Default Value: 1.000 & Units: Seconds
\end{tabular}

\section*{CP-413 Tmr2 on Tm}

Timer 2 on Time (CP-413) is the time, in seconds, from which Tmr 2 Out is activated \((=1)\) until Tmr2 Out is deactivated (back to 0 ). When the Tmr2 En bit (125) returns to " 0 ", the Tmr2 Out bit (25) is reset \(=0\) and the on- time is reset to " 0 ". If you want Tmr2 on-time to be infinite ("On" until Tmr2 is disabled with Tmr2 En \(=0\) ), then enter a value of -1 into Tmr2 on Tm (CP-413).

Minimum Value: -1
Default Value: -1

Maximum Value: 86400
Units: Seconds

\section*{CP-414 Tmr3 Delay}

Timer 3 Delay (CP-414) is the time, in seconds, from which Timer 3 becomes enabled (Tmr3 En bit going from 0 to 1) until the Tmr3 Out bit (26) in the PLC is activated \(=1\). When the Tmr3 En bit (126) returns to " 0 ", the Tmr3 Out bit (26) is reset to " 0 " and the delay-time is reset to " 0 ".

Minimum Value: \(0 \quad\) Maximum Value: 86400
Default Value: 1.000 Units: Seconds

\section*{CP-415 Tmr3 on Tm}

Timer 3 on Time (CP-415) is the time, in seconds, from which Tmr3 Out is activated (=1) until Tmr3 Out is deactivated (back to 0 ). When the Tmr3 En bit (126) returns to " 0 ", the Tmr3 Out bit (24) is reset \(=0\) and the on- time is reset to " 0 ". If you want Timer 3 on-time to be infinite ("On" until Tmr3 is disabled with Tmr3 En = 0), then enter a value of -1 into Tmr3 on Tm (CP-415).

Minimum Value: -1
Default Value: -1

Maximum Value: 86400
Units: Seconds

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-416 Tmr4 Delay}

Timer 4 Delay (CP-416) is the time, in seconds, from Timer 4 becoming enabled (Tmr4 En bit going from " 0 " to " 1 ") toTmr4 Out bit (27) in the PLC going active \(=1\). If Tmr4 becomes disabled, the delay-time is retained so the timing can continue when Tmr4 is re-enabled. The Tmr4Rst bit (128) in the PLC must be used to reset the delay time to " 0 ".

\author{
Minimum Value: \(0 \quad\) Maximum Value: 86400 \\ Default Value: \(1.000 \quad\) Units: Seconds
}

\section*{CP-417 Tmr4 on Tm}

Timer 4 on Tm (CP-417) is the time, in seconds, from Tmr4 Out going active (= 1) until Tmr4 Out going inactive (back to " 0 "). When Tmr4 becomes disabled, the on-time is retained so the timing can continue when Tmr4 is re-enabled. The Tmr4 Rst bit (128) in the PLC must be used to reset the on-time to " 0 ". If you want Tmr4 on-time to be infinite ("On" until Tmr4 is reset with Tmr4 Rst = 1), then enter a value of "- 1 " in Tmr4 on Tm (CP-417).
\begin{tabular}{ll} 
Minimum Value: -1 & Maximum Value: 86400 \\
Default Value: -1 & Units: Seconds
\end{tabular}

\section*{CP-420 Cntr1 Trig}

When the Cntr1 Cnt (CP-421) is greater than or equal to Counter 1 Trigger (CP-420), then the Cntr1 Out bit (32) in the PLC is set to " 1 ". If the count is less than Counter 1 Trigger, then Cntr1 Out bit (32) will be " 0 ".
\[
\begin{array}{ll}
\text { Minimum Value: } 0 & \text { Maximum Value: } 10000000 \\
\text { Default Value: } 10 & \text { Units: Counts }
\end{array}
\]

\section*{CP-421 Cntr1 Cnt}

Counter 1 Count (CP-421) is the current count for "Counter 1". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr1 Inc bit (130). Counter 1 Count is the default batch counter. Either use the Scroll keys or enter a new number to change this value. When the PLC program sets Cntr1 Rst bit (135) to " 1 ", then the Cntr1 Cnt (CP-421) resets to " 0 ".
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 10000000 \\
Default Value: 0 & Units: Counts
\end{tabular}

\section*{CP-422 Cntr2 Trig}

When the Cntr2 Cnt (CP-423) is greater than or equal to Counter 2 Trigger (CP-422), then the Cntr2 Out bit (33) in the PLC is set to " 1 ". If the count is less than, the Counter 2 Trigger, the Cntr2 Out bit (33) will be " 0 ".

\author{
Minimum Value: \(0 \quad\) Maximum Value: 10000000 \\ Default Value: 10 Units: Counts
}

\section*{CP-423 Cntr2 Cnt}

Counter 2 Count (CP-423) is the current count for "Counter 2". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr2 Inc bit (131). Either use the Scroll keys or enter a new number to change this value. When the PLC program sets Cntr2 Rst bit (136) to " 1 ", then the Cntr2 Cnt (CP-423) resets to " 0 ".

\author{
Minimum Value: 0 \\ Default Value: 0 \\ Maximum Value: 10000000 \\ Units: Counts
}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-424 Cntr3 Trig}

When the Cntr3 Cnt (CP-425) is greater than or equal to Counter 3 Trigger (CP-424), then the Cntr3 Out bit (34) in the PLC is set to " 1 ". If the count is less than, the Counter 3 Trigger, the Cntr3 Out bit (34) will be " 0 ".
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 10000000 \\
Default Value: 10 & Units: Counts
\end{tabular}

\section*{CP-425 Cntr3 Cnt}

Counter 3 Count (CP-425) is the current count for "Counter 3". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr3 Inc bit (132). Either use the Scroll keys or enter a new number to change this value. When the PLC program sets Cntr3 Rst bit (137) to " 1 ", then the Cntr3 Cnt (CP-425) resets to " 0 ".
```

Minimum Value: $0 \quad$ Maximum Value: 10000000
Default Value: $0 \quad$ Units: Counts

```

\section*{CP-426 Cntr4TrigUp}

When Cntr4 Cnt (CP-427) is greater than or equal to Counter 4 Trigger Up (CP-426), then the Cntr4 UpOut bit (35) in the PLC is set to " 1 ". If the count is less than, the Counter 4 Trigger Up, the Cntr4UpO bit (35) will be " 0 ".
\[
\begin{array}{ll}
\text { Minimum Value: } 0 & \text { Maximum Value: } 10000000 \\
\text { Default Value: } 10 & \text { Units: Counts }
\end{array}
\]

\section*{CP-427 Cntr4Cnt}

Counter 4 Count (CP-427) is the current count for "Counter 4". The CX-1102 automatically increments it one count for every " 0 " to " 1 " transition of the Cntr4 Inc bit (133). The CX-1102 automatically decrements it one count for every " 0 " to " 1 " transition of the Cntr Dec bit (134). Either use the Scroll keys or enter a new number to change this value. When the PLC program sets Cntr4 Rst bit (138) to " 1 ", then the Cntr4 Cnt (CP-427) resets to the value of Cntr4Preset (CP-429).

\author{
Minimum Value: \(0 \quad\) Maximum Value: 10000000 \\ Default Value: \(0 \quad\) Units: Counts
}

\section*{CP-428 Cntr4TrigDn}

When Cntr4 Cnt (CP-427) is less than or equal to Counter 4 Trigger Down (CP-428), then the Cntr4DnO bit (36) in the PLC is set to " 1 ". If the count is less than, the Counter 4 Trigger Down, the Cntr4 DnO bit (36) will be " 0 ".
```

Minimum Value: 0 Maximum Value: }1000000
Default Value: 0 Units: Counts

```

\section*{CP-429 Cntr4Preset}

When the Cntr4 Rst bit in the PLC Programming screen is set to " 1 ", then Cntr4 Cnt (CP-327) is set to and held at the Counter 4 Preset (CP-429) value. If you need a transition preset, then create a one-shot or, when possible, use the DI 1 Shot (CP-402) mask.

Minimum Value: \(0 \quad\) Maximum Value: 10000000
Default Value: \(0 \quad\) Units: Counts
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-430 DN Write Parm 1}

Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: CP
\end{tabular}

\section*{CP-431 DN Write Parm 2}

Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: CP
\end{tabular}

\section*{CP-432 DN Write Parm 3}

Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: CP
\end{tabular}

\section*{CP-433 DN Write Parm 4}

Enter the number of a Control Parameter to be written to with the DeviceNet poll command in the I/O Assembly Queue.
Minimum Value: \(0 \quad\) Maximum Value: 667
Default Value: \(0 \quad\) Units: CP

\section*{CP-434 DN Read Parm 1}

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 667 \\ \text { Default Value: } 0 & \text { Units: CP or MP }\end{array}\)

\section*{CP-435 DN Read Parm 2}

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.
Minimum Value: 0
Maximum Value: 667
Default Value: 0
Units: CP or MP

\section*{CP-436 DN Read Parm 3}

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll command in the I/O Assembly Queue.

Minimum Value: 0
Default Value: 0

Maximum Value: 667
Units: CP or MP

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-437 DN Read Parm 4}

Enter the number of a Control Parameter or Monitor Parameter to be read with the DeviceNet poll Command in the I/O Assembly Queue.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: CP or MP
\end{tabular}

\section*{CP-438 DN MAC ID}

DN MAC ID is the DeviceNet Media Access Control Identifier. The MAC ID is used to assign a uniqe identifier or address to each node on the network. Assign a different MAC ID to each CX-1102 device on the network from 0 to 63 .
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 63 \\
Default Value: 63 & Units: ID
\end{tabular}

\section*{CP-439 DN Baud Rate}

The DN Baud Rate is the network data or transfer rate. Enter the number from the listing below that corresponds to the desired baud rate:
\[
\begin{aligned}
& 1=125 \mathrm{kbps} \\
& 2=250 \mathrm{kbps} \\
& 3=500 \mathrm{kbps}
\end{aligned}
\]

Minimum Value: \(1 \quad\) Maximum Value: 3
Default Value: \(1 \quad\) Units: Coded

\section*{CP-440 Lg Number Parm}

Use Large Number Parameter (CP-440) to select the parameter that displays in the large number display in the Status screen (refer to the status screen in Operation: Screen Operation). You can also use the Code key to access and change CP-440 in the Status screen.
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 667 (restricted) \\
Default Value: 40 & Units: Parameter Code
\end{tabular}

\section*{CP-441 Status Line 1}

Use Status Line 1 (CP-441) to select the parameter that displays on the first line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). You can also use the Code key to access and change CP-441 in the Status screen.

Minimum Value: \(1 \quad\) Maximum Value: 667
Default Value: 201 Units: Parameter Code

\section*{CP-442 Status Line 2}

Use Status Line 2 (CP-442) to select the parameter that displays on the second line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-442. You can also use the Code key to access and change CP-442 in the Status screen.

Minimum Value: \(0 \quad\) Maximum Value: 667
Default Value: 50
Units: Parameter Code
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-443 Status Line 3}

Use Status Line 3 (CP-443) to select the parameter that displays on the third line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-443. You can also use the Code key to access and change CP-443 in the Status screen.

Minimum Value: \(0 \quad\) Maximum Value: 667

\section*{CP-444 Status Line 4}

Use Status Line 4 (CP-444) to select the parameter that displays on the fourth line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-444. You can also use the Code key to access and change CP-444 in the Status screen.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 667 \\ Default Value: 17 Units: Parameter Code
}

\section*{CP-445 Status Line 5}

Use Status Line 5 (CP-445) to select the parameter that displays on the fifth line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-445. You can also use the Code key to access and change CP-445 in the Status screen.
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 667 \\ \text { Default Value: } 83 & \text { Units: Parameter Code }\end{array}\)

\section*{CP-446 Status Line 6}

Use Status Line 6 (CP-446) to select the parameter that displays sixth line (under the Large Number Display) of the Status screen (refer to the status screen in Operation: Screen Operation). If you want this line to remain blank, enter a " 0 " in CP-446. You can also use the Code key to access and change CP-446 in the Status screen.

Minimum Value: \(0 \quad\) Maximum Value: 667
Default Value: 84 Units: Parameter Code

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-449 Lg Number Units}

Use Large Number Units (CP-449) to select the EU text that displays immediately below the Large Number Display on the Status screen (refer to the status screen in Operation: Screen Operation). Enter a numeric code that identifies the EU for the Control Parameter displayed in the Large Number Parameter (CP-440). Refer to the numeric code list below. The Help screen for CP-449 also contains a partial list of numeric code options. In addition, you can also scroll through the numeric code options by accessing CP-449 with the Code key while you are in the in the Status screen.
\[
\begin{aligned}
& 0=\langle\text { BLANK }> \\
& 1=\text { Inches } / \mathrm{min} \\
& 2=\text { Feet } / \mathrm{min} \text { (default) } \\
& 3=\text { Yards } / \mathrm{min} \\
& 4=\mathrm{mm} / \mathrm{min} \\
& 5=\mathrm{cm} / \mathrm{min} \\
& 6=\text { Meters } / \mathrm{min} \\
& 7=\text { Inches } / \mathrm{sec} \\
& 8=\text { Feet } / \mathrm{sec} \\
& 9=\text { Yards } / \mathrm{sec} \\
& 10=\mathrm{mm} / \mathrm{sec} \\
& 11=\mathrm{cm} / \mathrm{sec} \\
& 12=\text { Meters } / \mathrm{sec} \\
& 13=\text { Inches } / \mathrm{hr} \\
& 14=\text { Feet } / \mathrm{hr} \\
& 15=\text { Yards } / \mathrm{hr} \\
& 16=\mathrm{mm} / \mathrm{hr} \\
& 17=\mathrm{cm} / \mathrm{hr} \\
& 18=\text { Meters } / \mathrm{hr} \\
& 19=\text { Inches } \\
& 20=\text { Feet } \\
& 21=\text { Yards }
\end{aligned}
\]
\(22=\) Millimeters
\(23=\) Centimeters
\(24=\) Meters
\(25=\) Hertz
\(26=\) RPM
\(27=\) Lines
\(28=\) Counts
\(29=\) Rotations
\(30=\) RPM \(/\) sec
\(31=\) Counts/sec
\(32=\) Pulses \(/\) rev
\(33=\) Volts
\(34=\) Volts \(/ k R P M\)
\(35=\) Bits
\(36=\) Percent (\%)
\(37=\) Seconds
\(38=\) Minutes
\(39=\) Hours
\(40=\) Units/sec
\(41=\) Units \(/ \mathrm{min}\)
\(42=\) Units \(/ \mathrm{hr}\)
\(43=\) Custom (user defined through the serial com)
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 43 \\
Default Value: 2 Feet/min (default) & Units: Coded
\end{tabular}

\section*{CP-450 Diagnostics En}

When Diagnostics Enable (CP-450) is set to " 1,2 or 3" (On or enabled), the digital inputs will not recognize their normal function and the digital outputs can be controlled by Diag DO (CP-452). In addition, the SigU/SigW Control Output can be tested. When you enter diagnostics, Diag DO (CP-452) is forced equal to the current DO 7..0 (MP-102) so that there is no unexpected change in the outputs. Change the outputs through Diag DO (CP-452) while performing the diagnostics.

Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
\[
\begin{aligned}
& 3=\text { Both } \\
& 2=\text { Wind Axis } \\
& 1=\text { Unwind Axis } \\
& 0=\text { Disabled (default) }
\end{aligned}
\]

Minimum Value: 0
Default Value: 0

Maximum Value: 3
Units: Coded
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-451 Diag DO Shift}

When in Diagnostics State, Diagnostics Digital Out Shift (CP-451) may be used to activate the digital outputs one at a time.

Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.
\begin{tabular}{ll}
\(8=\) Spare & Activated \\
\(7=\) WbBrk & Activated \\
\(6=\) Dncr & Activated \\
\(5=\) WR1Fl & Activated \\
\(4=\) WErr & Activated \\
\(3=\) UErr & Activated \\
\(2=\) WdEn & Activated \\
\(1=\) UwdEn & Activated \\
\(0=\) Off (default) &
\end{tabular}

Minimum Value: 0
Maximum Value: 8
Default Value: 0
Units: Coded

\section*{CP-452 Diag DO}

Diagnostic Digital Out (CP-452) controls the digital outputs when Diagnostics En (CP-450) is set to "1, 2 or 3" (On or enabled) during diagnostics. It is an 8 Bit Binary number with 1 bit per output. If the bit is a " 1 ", then the corresponding output is pulled "low". When you enter diagnostics, Diag DO (CP-452) is forced equal to the current DO 7..0 (MP-102) so that there is no unexpected change in the outputs. Change the outputs through Diag DO (CP-452) while performing the diagnostics.

Warning: The actuator may energize if you change Diag DO (CP-452). Stand clear of the system.


Minimum Value: 00000000
Default Value: 00000000

Maximum Value: 11111111
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-453 Diag DAC Test}

Diagnostic DAC Test (CP-453) selects and enables the type of output control that is used for the diagnostic Control Output DAC test.
\(2=\) Immediate Output
\(1=\) Continuous Ramp
\(0=\) Disabled (default)
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 2 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{CP-454 Diag DAC Volts}

Diagnostic DAC Volts (CP-454) is the maximum voltage output (either positive or negative) at the Control Output DAC during a non zero diagnostic DAC test. The voltage corresponds to Diag DAC Bits (CP-455).

Minimum Value: -15 Maximum Value: 15
Default Value: \(0 \quad\) Units: Volts

\section*{CP-455 Diag DAC Bits}

Diagnostic DAC Bits (CP-455) is the maximum value in bits written (either positive or negative) to the Control Output DAC during a non zero diagnostic DAC test (CP-453) and when Diag En (CP-450) is set to " 1 " (On or enabled). The value corresponds to Diag DAC Volts (CP-454).

Minimum Value: -32768
Maximum Value: 32767
Default Value: 0
Units: Bits

\section*{CP-456 Diag Rmp Tm}

Diagnostic Ramp Time (CP-456) is the time, in seconds, from 0 volts to either positive or negative Diag DAC Volts (CP-454) during a diagnostic DAC test with a ramp.

Minimum Value: \(0 \quad\) Maximum Value: 600
Default Value: 10.000 Units: Seconds

\section*{CP-460 Analog Cal En}

Analog Calibration Enable (CP-456) enables the calibration process for the auxiliary analog board. When Analog Cal En (CP-460) is set to " 1 " (On), the signal that is selected in Analog Cal Sel (CP-461) will be calibrated.
\(1=\) Enabled
\(0=\) Disabled (default)
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 1 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-461 Analog Cal Sel}

Analog Calibration Select (CP-461) selects the signal (AI1, AI2) on the auxiliary analog board for calibration.
\[
\begin{aligned}
& 2=\text { Analog In } 2 \text { (Linespeed Pot) } \\
& 1=\text { Analog In } 1 \text { (default) (Dancer) }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 2 \\
Default Value: 1 & Units: Coded
\end{tabular}

\section*{CP-462 Analog Cal Ref}

Analog Calibration Reference (CP-462) determines which of the two calibration reference points (see list below) are to be calibrated.
\[
\begin{aligned}
& 2=\text { point } \mathrm{B} \\
& 1=\text { point } \mathrm{A}(\text { default })
\end{aligned}
\]
\(\begin{array}{ll}\text { Minimum Value: } 1 & \text { Maximum Value: } 2 \\ \text { Default Value: } 1 & \text { Units: Coded }\end{array}\)

\section*{CP-463 Analog Ref Val}

Analog Reference Value (CP-463) is the value of measured data for the signal at the specified reference point (Analog Cal Ref, CP-462). Use a voltmeter for voltage mode operation to measure the voltage on the analog signal selected for calibration at the specified reference point. Enter the measured value in the Analog Ref Val (CP-463).
\begin{tabular}{ll} 
Minimum Value: -6.0 & Maximum Value: 6 \\
Default Value: 0 & Units: Volts
\end{tabular}

\section*{CP-468 CRC Enable}

If CRC Enable (CP-468) is set to "ON" (1), you must append a CRC value to all serial communications messages that are received by the CX-1102 (See Serial Communications: Using Serial Communications). The CX-1102 checks the CRC value against the the message contents (excluding the "STX"), then calculates a CRC value and appends it to all serial communications responses. If CRC Enable (CP-468) is set to "OFF" (0), the CX-1102 will ignore any CRC value that is appended to a message and will not append a CRC value to any serial communications responses.
\[
\begin{aligned}
& 1=\text { On (Enabled) } \\
& 0=\text { Off (Disabled) }
\end{aligned}
\]

Minimum Value: 0
Maximum Value: 1
Default Value: 1
Units: None

\section*{CP-469 Record Format}

Record Format (CP-469) determines which type of data format (see list below) will be used for the serial communication.
\[
\begin{aligned}
& 3=\text { ASCII } 2 \\
& 2=\text { ASCII } \\
& 1=\text { BINARY }
\end{aligned}
\]

Minimum Value: 1
Default Value: 1

Maximum Value: 3
Units: Coded

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-470 Device Address}

Device Address (CP-470) assigns a serial communications address to the CX-1102. This number should be different from any other units that are on the serial communications link.
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 99 \\
Default Value: 1 & Units: Address
\end{tabular}

\section*{CP-471 Baud Rate}

The Baud Rate (CP-471) determines the serial communications data transfer rate (see list below) in Bits/sec. With a 10 bit frame length, the number of frame/sec would be \(1 / 10\) the Baud Rate.
\[
\begin{aligned}
& 1=300 \mathrm{bps}=300 \text { Baud } \\
& 2=600 \mathrm{bps}=600 \text { Baud } \\
& 3=1200 \mathrm{bps}=1200 \text { Baud } \\
& 4=2400 \mathrm{bps}=2400 \text { Baud } \\
& 5=4800 \mathrm{bps}=4800 \text { Baud } \\
& 6=9600 \mathrm{bps}=9600 \text { Baud (default) } \\
& 7=19200 \mathrm{bps}=19.2 \mathrm{k} \text { Baud }
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 1 & Maximum Value: 7 \\
Default Value: 6 & Units: Coded
\end{tabular}

\section*{CP-472 Frame Format}

Frame Format (CP-472) determines the parity, the number of data bits, and the number of stop bits for the serial communications.
\(1=\mathrm{N}, 8,1=\) No Parity, 8 data bits, 1 stop bit (10 bit frame - ASCII or Binary) (default)
\(2=\mathrm{E}, 7,1=\) Even Parity, 7 data bits, 1 stop bit ( 10 bit frame-ASCII only)
Minimum Value: \(1 \quad\) Maximum Value: 2
Default Value: 1 Units: Coded

\section*{CP-473 SerCom Char Out}

When a new value is entered in SerCom Char Out (CP-473), it is transmitted out the RS-485 serial port at the Baud Rate (CP-471) and the Frame Format (CP-472). SerCom Char Out (CP-473) is a decimal number.

Minimum Value: 0
Default Value: 0

Maximum Value: 255
Units: Decimal Character

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-474 Video Mode}

Video Mode (CP-474) determines how the LCD Screen Display will be dispalyed, per the list below:
\(3=\) Standard Video w/Border
\(2=\) Reverse Video
\(1=\) Standard Video(default)

Minimum Value: \(1 \quad\) Maximum Value: 3
Default Value: 1 Units: Coded

\section*{CP-475 Contrast Value}

Contrast Value (CP-475) determines the contrast for the LCD Screen Display. The higher values darken the pixels and lower values lighten the pixels.

Minimum Value: \(8 \quad\) Maximum Value: 32
Default Value: \(18 \quad\) Units: Contrast Integer

\section*{CP-478 Blk Sel Source}

Block Select Source (CP-478) determines whether the active block will be selected by the digital inputs and PLC, by Keypad Blk Sel (CP-479) or by Cntr4 Cnt.
\[
\begin{aligned}
& 3=\text { Cntr } 4 \text { Cnt } \\
& 2=\text { KyPd }=\text { Keypad Blk Sel } \\
& 1=\text { DgIn }=\text { Digital Inputs/PLC (default) }
\end{aligned}
\]

Minimum Value: \(1 \quad\) Maximum Value: 2
Default Value: 1 Units: Coded

\section*{CP-479 Keypad Blk Sel}

The Keypad Block Select (CP-479) determines which block will be active when Blk Sel Source (CP-478) is set to " 2 " (KyPd).
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 7 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-480 KyPdLk Mask}

Key Pad Lock Mask (CP-480) sets the level of keypad lockout when the Keypad Lockout input is active (low). Each level allows certain Control Parameters to be changed (or masked out from the lockout) even though keypad lockout is active. A value of " 1 " or higher allows the Control Parameters that are selected by Unlock CP A-H (CP-481 to CP-488) to be changed, with the keypad lockout active. When set to " 3 " (Blk Vals), the block values can be changed as well as the Main List Block Parameter Values and the unlocked Control Parameters. When set to " 4 " (UnLckB1k), the block values of the block selected by Unlock Block (CP-489) can be changed as well as the main list block parameter values and the unlocked Control Parameters, when the selected block is active.

4 = UnLckBlk = Block Values of the Block Selected by Unlock Block (CP-489) and the Unlocked CP's.
\(3=\) Blk Vals \(=\) All BlockValues (CP-540-567) and the Unlocked CP's are allowed to change.
\(2=\) Setpnts \(=\) Setpoints (CP-210, 220, 230, 235, 240) and the Unlocked CP's are allowed to change.
\(1=\) UnlckCP = CP's selected by the Unlock CP A - F are allowed to changed.
\(0=\) Total Lockout (default).
Minimum Value: \(0 \quad\) Maximum Value: 4
Default Value: \(0 \quad\) Units: Coded

\section*{CP-481 Unlock CPA}

Unlock Control Parameter A (CP-481) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP A (CP-481) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter "0" in Unlock CP A (CP-481) to disable it from selecting any Control Parameter.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{CP-482 Unlock CP B}

Unlock Control Parameter B (CP-482) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP B (CP-482) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter " 0 " in Unlock CP B (CP-482) to disable it from selecting any Control Parameter.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{CP-483 Unlock CP C}

Unlock Control Parameter C (CP-483) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP C (CP-483) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter "0" in Unlock CP C (CP-483) to disable it from selecting any Control Parameter.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{CP-484 Unlock CP D}

Unlock Control Parameter D (CP-484) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP D (CP-484) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter "0" in Unlock CP D (CP-484) to disable it from selecting any Control Parameter.
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 667 \\ \text { Default Value: } 0 & \text { Units: Parameter Code }\end{array}\)
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-485 Unlock CP E}

Unlock Control Parameter E (CP-485) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP E (CP-485) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter " 0 " in Unlock CP E (CP-485) to disable it from selecting any Control Parameter.
\(\begin{array}{ll}\text { Minimum Value: } 0 & \text { Maximum Value: } 667 \\ \text { Default Value: } 0 & \text { Units: Parameter Code }\end{array}\)

\section*{CP-486 Unlock CP F}

Unlock Control Parameter F (CP-486) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP F (CP-486) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter " 0 " in Unlock CP F (CP-486) to disable it from selecting any Control Parameter.

Minimum Value: \(0 \quad\) Maximum Value: 667
Default Value: \(0 \quad\) Units: Parameter Code

\section*{CP-487 Unlock CP G}

Unlock Control Parameter G (CP-487) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP G (CP-487) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter "0" in Unlock CP G (CP-487) to disable it from selecting any Control Parameter.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{CP-488 Unlock CP H}

Unlock Control Parameter H (CP-488) determines which Control Parameter can change, even when the keypad lockout is active. For the Unlock CP H (CP-488) to function, KyPdLk Mask (CP-480) must be set to something other than " 0 " (All Lock). Enter "0" in Unlock CP H (CP-488) to disable it from selecting any Control Parameter.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 667 \\
Default Value: 0 & Units: Parameter Code
\end{tabular}

\section*{CP-489 Unlock Block}

Unlock Block (CP-489) determines which block of Control Parameters can change values, even though keypad lockout is active. The main list block parameter values are also allowed to be changed when the selected Unlock Block is active and KyPdLk Mask (CP-480) is set to 'UnlckBlk' (4). For the Unlock Block (CP-489) to function, KyPdLk Mask (CP-480) must be set to " 4 "

Minimum Value: 0
Default Value: 7

Maximum Value: 7
Units: Block Number

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-490 Memory Test}

To test the physical memory, either enter the number associated with the test (see list below) in Memory Test (CP-490) or go to the Help screen for Memory Test (CP-490) and choose the test. The test result will flash in the error and message status bar at the bottom of the screen and is also summarized in the Diagnostics/Device Tests Memory screen. The test results are also available through Monitor Parameters MP-94, MP-95, MP-96.
\[
\begin{aligned}
& 4=\text { Test ALL MEMORY } \\
& 3=\text { Test NVRAM } \\
& 2=\text { Test SRAM } \\
& 1=\text { Test ROM } \\
& 0=\text { Test Done } *
\end{aligned}
\]
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 4 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{CP-491 Clr Fault Cntrs}

To reset all the system-fault counters except Norm- Pwr-Ups (MP-84), enter a " 1 " in Clear Fault Counters (CP-491). The error and message status bar at the bottom of the screen will flash "Flts Cleared" and the value will return to "0".
```

Minimum Value: 0 Maximum Value: }
Default Value: 0 Units: Coded

```

\section*{CP-492 Video Test}

To start the Video Test, enter " 1 " in Video Test (CP-492). Then use the page up/down keys to page through tests. Press the Menu key to exit the tests and return to the previous screen.

\author{
Minimum Value: \(0 \quad\) Maximum Value: 1 \\ Default Value: \(0 \quad\) Units: Coded
}

\section*{CP-495 Serial Number}

Serial Number (CP-495) is the serial number from the DeviceNet card in this CX-1102 controller. If the card was factory installed, the Serial Number should already be entered. If the card is being field installed, enter the Serial Number from the label on the card or recorded in the DeviceNet Card Technical Manual.

\section*{CP-496 Load Parms}

Use Load Parameters (CP-496) to retrieve (load) parameter values from either the factory or the default backup list. You can specify which parameter values to load form the back up, per the list below. It is easier to select the Load Parameters values through the "Help" screen, however, you can enter the corresponding number directly into the Load Parm (CP-496). A message will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation. The Load Parameters operation will not function while the CX-1102 is in "RUN".
\begin{tabular}{ll}
\(6=\) Load Dflts BlockCP & Load Factory Defaults into CP-400 through CP-667 \\
\(5=\) Load Dflts Main CP & Load Factory Defaults into CP-201 through CP-494 \\
\(4=\) Load Dflts All Cp & Load Factory Defaults into CP-201 through CP-667 \\
\(3=\) Load Backup BlockCP & Load Backup into CP-500 through CP-667 \\
\(2=\) Load Backup Main CP & Load Backup into CP-201 through CP-494 \\
\(1=\) Load Backup All Cps & Load Backup into CP-201 through CP-667 \\
\(0=\) No Change &
\end{tabular}
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 6 \\
Default Value: 0 & Units: Coded
\end{tabular}
(Continued)

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-497 Load PLC Prgm}

Use Load PLC Program (CP-497) to retrieve (load) either the backup for the PLC program which you have saved or the factory default PLC program. Enter " 1 " to load the backup PLC program or enter " 2 " to load the factory default PLC program. You can also select the one of the two values through the Help screen. The loaded program is compiled and a message will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation. The Load PLC Program operation will not function while the CX-1102 is in "RUN".
\begin{tabular}{ll}
\(2=\) Load Dflt PLC Prg & Load Factory Default PLC program \\
\(1=\) Load Backup PLC Prg & Load Backup PLC program \\
\(0=\) No Change &
\end{tabular}
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 2 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{CP-498 Save Parms}

Use Save Parameters (CP-498) to save the current parameter values to the backup. You can specify which parameter values to save as back up, per the list below Either enter the corresponding number directly into the Save Parameters (see list below) or select the Save Parameters values through the Help screen. A message (Saved2 BkUp) will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation.
\begin{tabular}{ll}
\(3=\) Save Block CP's & Save CP-500 through CP-667 to Backup \\
\(2=\) Save Main CP's & Save CP-201 through CP-494 to Backup \\
\(1=\) Save All CP's & Save CP-201 through CP-667 to Backup \\
\(0=\) No Change &
\end{tabular}

Minimum Value: \(0 \quad\) Maximum Value: 3

\section*{CP-499 Save PLC Prgm}

Enter a " 1 " in Save PLC Program (CP-499) to save the current PLC program to the backup. A message (Saved2 BkUp) will flash in the error and message status bar at the bottom of the screen to indicate the completion of the operation.
\(1=\) Save PLC Program to Backup
\(0=\) No Change
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 1 \\
Default Value: 0 & Units: Coded
\end{tabular}

\section*{CP-500 to CP-515 Block Parm 1 - Block Parm 16}

Use the Block Parameters 1-16 (CP-500 to CP-515 ) to select the Control Parameters that will be controlled by the BLK0 Val1 - BLK7 Val 16 values (CP-540 to CP-667 ). When you enter a new parameter number in a block parameter, the text that appears immediately below the block parameter will change accordingly. Enter a " 0 " to clear the block parameters that are not in use. There are eight blocks; each contains up to sixteen Control Parameters.
\begin{tabular}{ll} 
Minimum Value: 0 & Maximum Value: 349 \\
Default Value: 110 & Units: Parameter Code
\end{tabular}

\section*{Appendix C: Parameter Summary Numeric Quick Reference (continued)}

\section*{CP-540 to CP-667 Blk0 Val 1 - Blk7 Val 16}

Use the Block Values (CP-540 to CP-667 ) to define or change the values of the Control Parameters that you assigned to the Block Parameters (CP-500 to CP-515 ). This allows you to assign up to eight different values to a single parameter, which you can select. The active Block Value is selected by the PLC and monitored by Active Block (CP-51).

\author{
Minimum Value: -99999999 Maximum Value: 99999999 \\ Default Value: \(0 \quad\) Units: Parameter Value
}

\section*{APPENDIX D: CONTROL PARAMETER REFERENCE}
\begin{tabular}{|lrrr|r|l|}
\hline & & MIN & MAX & DEFAULT & RECORD \\
CODE & DESCRIPTION & & & \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & USER RECORD & UNITS \\
\hline CP-277 Ext LS Max & -9999999 & 9999999 & 100.0 & & EU/Tm \\
\hline CP-278 ExtLSMinVolts & -5.0 & 5 & 0.0 & & Volts \\
\hline CP-279 Ext LS Min & -9999999 & 9999999 & 0.0 & & EU/Tm \\
\hline CP-280 UwndCO Mode & 1 & 4 & 2 & & Coded \\
\hline CP-281 UwndCOMaxVolts & 0.1 & 15 & 10.0 & & Volts \\
\hline CP-282 UwndCOPolarity & 1 & 2 & 1 & & Coded \\
\hline CP-283 UwndCO Offset & -1.00 & 1 & 0 & & Volts \\
\hline CP-285 WindCO Mode & 1 & 3 & 2 & & Coded \\
\hline CP-286 WindCOMaxVolts & 0.1 & 15 & 10.0 & & Volts \\
\hline CP-287 WindCOPolarity & 1 & 2 & 1 & & Coded \\
\hline CP-288 WindCO Offset & -1.00 & 1 & 0.00 & & Volts \\
\hline CP-300 Ref Ramps & 0.001 & 9999999 & 100 & & \[
\mathrm{EU} / \mathrm{Tm}
\] \\
\hline CP-301 Acl Tm RUN & 0.5 & 3600 & 10.00 & & Seconds \\
\hline CP-302 Acl Rt RUN & 0 & 9999999 & 10.00 & & \[
\mathrm{EU} / \mathrm{Tm} / \mathrm{S}
\] \\
\hline CP-303 Dcl Tm RUN & 0.5 & 3600 & 10.00 & & Seconds \\
\hline CP-304 Dcl Rt RUN & 0 & 9999999 & 10.00 & & \[
\mathrm{EU} / \mathrm{Tm} / \mathrm{S}
\] \\
\hline CP-307 Dcl Tm HStp & 0.5 & 3600 & 10.00 & & Seconds \\
\hline CP-308 Dcl Rt HStp & 0 & 9999999 & 10.00 & & \[
\mathrm{EU} / \mathrm{Tm} / \mathrm{S}
\] \\
\hline CP-311 Acl Tm Drct & 0 & 3600 & 3.000 & & Seconds \\
\hline CP-312 Dcl Tm Drct & 0 & 3600 & 3.000 & & Seconds \\
\hline CP-321 Jog Loop Mode & 0 & 1 & 1 & & Coded \\
\hline CP-323 Uwnd Kp-p & 0 & 32767 & 2 & & Constant \\
\hline CP-325 Uwnd Kp & 0 & 30000 & 400 & & Constant \\
\hline CP-326 Uwnd Ki & 0 & 30000 & 40 & & Constant \\
\hline CP-327 Uwnd Kd & 0 & 30000 & 200 & & Constant \\
\hline CP-328 UwndDerivThd & 0 & 99999 & 5 & & Roll RPM \\
\hline CP-329 Uwnd MaxRPM & 0.1 & 999999 & 2000 & & Roll RPM \\
\hline CP-331 Dancer Auth & 0 & 9999999 & 100 & & EU/Tm \\
\hline CP-332 Dancer Gain & 0 & 99999 & 50 & & EU/Tm/EU \\
\hline CP-333 Wind Kp-p & 0 & 32767 & 2 & & Constant \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & DEFAULT & USER RECORD & UNITS \\
\hline CP-335 W & Wind Kp & 0 & 30000 & 400 & & Constant \\
\hline CP-336 W & Wind Ki & 0 & 30000 & 40 & & Constant \\
\hline CP-337 W & Wind Kd & 0 & 30000 & 200 & & Constant \\
\hline CP-338 W & Wind DerivThd & 0 & 99999 & 5 & & Roll RPM \\
\hline CP-339 W & Wind MaxRPM & 0.1 & 999999 & 2000 & & Roll RPM \\
\hline CP-340 C & Cntrl Latch & 0 & 255 & 0 & & Coded \\
\hline CP-341 L & Loop Update & 1 & 3 & 1 & & Coded \\
\hline CP-342 K & KffAdjUpdt & 1 & 6 & 3 & & Coded \\
\hline CP-343 K & KffAutoSel & 1 & 3 & 3 & & Coded \\
\hline CP-344 K & Kff Auto En & 0 & 1 & 0 & & Coded \\
\hline CP-345 D & DncrMinDelta & 0.01 & 99999 & 0.05 & & Web EU \\
\hline CP-346 U & UwndMinDelta & 0.001 & 99999 & 0.1 & & Rotations \\
\hline CP-347 W & WindMinDelta & 0.001 & 99999 & 0.1 & & Rotations \\
\hline CP-348 S & Sig Fltr Sel & 0 & , & 0 & & Coded \\
\hline CP-349 S & SigFltrTmConst & 2 & 500 & 10 & & mSec \\
\hline CP-350 U & UwndMinDia & 0.001 & 99999 & 12.0 & & Dia EU \\
\hline CP-351 U & UwndMaxDia & 0.001 & 100000 & 72 & & Dia EU \\
\hline CP-352 W & WindMinDia & 0.001 & 99999 & 12.0 & & Dia EU \\
\hline CP-353 W & WindMaxDia & 0.001 & 100000 & 72 & & Dia EU \\
\hline CP-355 R & Ramp Thd & 0 & 999999 & 1.0 & & EU/Tm \\
\hline CP-356 U & UwndTrim Auth & 0 & 100 & 100.0 & & \%of CP281 \\
\hline CP-357 U & UwndIntgrl Lmt & 0 & 100 & 100.0 & & \% of CP281 \\
\hline CP-358 W & WindTrim Auth & 0 & 100 & 100.0 & & \%of CP286 \\
\hline CP-359 W & WindIntgrl Lmt & 0 & 100 & 100.0 & & \%of CP286 \\
\hline CP-361 L & LoadDiaCalcEn & 0 & 1 & 1 & & Coded \\
\hline CP-364 U & UwndDiaPrst & 0 & 99999 & 48 & & Dia EU \\
\hline CP-365 W & WindDiaPrst & 0 & 99999 & 48 & & Dia EU \\
\hline CP-366 U & UwndCtntPrst & 0 & 9999999 & 10000 & & Web EU \\
\hline CP-367 W & WindCtntPrst & 0 & 9999999 & 10000 & & Web EU \\
\hline CP-368 U & UwndCtntRO & 0 & 9999999 & 10000 & & Web EU \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & USER RECORD & UNITS \\
\hline CP-369 WindCtntRO & 0 & 9999999 & 10000 & & Web EU \\
\hline CP-370 Zero Speed & 0 & 100000 & 5.0 & & Roll RPM \\
\hline CP-371 Max LS Alm & 0 & 9999999 & 2000 & & EU/Tm \\
\hline CP-372 NO Resp Time & 0.010 & 600 & 1.000 & & Seconds \\
\hline CP-373 UwndMaxRmp & 0 & 9999999 & 2000 & & RPM/Sec \\
\hline CP-374 WindMaxRmp & 0 & 9999999 & 2000 & & RPM/Sec \\
\hline CP-378 Std Alm Msk & 00000000 & 11111111 & 00000000 & & Coded \\
\hline CP-379 CustAlm Msk & 00000000 & 11111111 & 00000000 & & Coded \\
\hline CP-380 Cmpr1 Parm & 1 & 199 & 12 & & MP \\
\hline CP-381 Cmpr2 Parm & 1 & 199 & 22 & & MP \\
\hline CP-382 Cmpr3 Parm & 1 & 199 & 32 & & MP \\
\hline CP-383 Cmpr 4 Parm & 1 & 199 & 17 & & MP \\
\hline CP-386 Cmpr1 Type & 1 & 6 & 4 & & Coded \\
\hline CP-387 Cmpr2 Type & 1 & 6 & 4 & & Coded \\
\hline CP-388 Cmpr3 Type & 1 & 6 & 4 & & Coded \\
\hline CP-389 Cmpr4 Type & 1 & 6 & 5 & & Coded \\
\hline CP-392 Cmpr1 Val & -9999999 & 9999999 & 2000 & & Parm Val \\
\hline CP-393 Cmpr2 Val & -9999999 & 9999999 & 200 & & Parm Val \\
\hline CP-394 Cmpr3 Val & -9999999 & 9999999 & 200 & & Parm Val \\
\hline CP-395 Cmpr4 Val & -9999999 & 9999999 & 72 & & Parm Val \\
\hline CP-396 Copy Source 1 & 1 & 667 & 0 & & CP or MP \\
\hline CP-397 Copy Dest 1 & 201 & 667 & 0 & & CP or MP \\
\hline CP-398 Copy Source 2 & 1 & 667 & 35 & & CP or MP \\
\hline CP-399 Copy Dest 2 & 201 & 667 & 35 & & CP or MP \\
\hline CP-400 Rmt Scroll & 0 & 449 & 201 & & \\
\hline CP-401 Rmt Scroll Rate & 1 & 100 & 10 & & Inc/Sec \\
\hline CP-402 DI 1 Shot & 00000000 & 11111111 & 00000000 & & Coded \\
\hline CP-403 DI Set & 00000000 & 11111111 & 00000000 & & Coded \\
\hline CP-405 PLC Monitor 1 & 0 & 223 & 12 & & PLC Bits \\
\hline CP-406 PLC Monitor 2 & 0 & 223 & 13 & & PLC Bits \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & USER RECORD & UNITS \\
\hline CP-407 PLC Bit Set & 0 & 223 & 3 & & PLC Bits \\
\hline CP-408 PLC Bit Clear & 0 & 223 & 2 & & PLC Bits \\
\hline CP-410 Tmr1 Delay & 0 & 86400 & 1.000 & & Seconds \\
\hline CP-411 Tmr1 on Tm & -1 & 86400 & -1 & & Seconds \\
\hline CP-412 Tmr2 Delay & 0 & 86400 & 1.000 & & Seconds \\
\hline CP-413 Tmr2 on Tm & -1 & 86400 & -1 & & Seconds \\
\hline CP-414 Tmr3 Delay & 0 & 86400 & 1.000 & & Seconds \\
\hline CP-415 Tmr3 on Tm & -1 & 86400 & -1 & & Seconds \\
\hline CP-416 Tmr4 Delay & 0 & 86400 & 1.000 & & Seconds \\
\hline CP-417 Tmr4 on Tm & -1 & 86400 & -1 & & Seconds \\
\hline CP-420 Cntr1 Trig & 0 & 10000000 & 10 & & Counts \\
\hline CP-421 Cntr1 Cnt & 0 & 10000000 & 0 & & Counts \\
\hline CP-422 Cntr2 Trig & 0 & 10000000 & 10 & & Counts \\
\hline CP-423 Cntr2 Cnt & 0 & 10000000 & 0 & & Counts \\
\hline CP-424 Cntr3 Trig & 0 & 10000000 & 10 & & Counts \\
\hline CP-425 Cntr3 Cnt & 0 & 10000000 & 0 & & Counts \\
\hline CP-426 Cntr4TrigUp & 0 & 10000000 & 10 & & Counts \\
\hline CP-427 Cntr4 Cnt & 0 & 10000000 & 0 & & Counts \\
\hline CP-428 Cntr4TrigDn & 0 & 10000000 & 0 & & Counts \\
\hline CP-429 Cntr4Preset & 0 & 10000000 & 0 & & Counts \\
\hline CP-430 DN Write Parm 1 & 0 & 667 & 0 & & CP \\
\hline CP-431 DN Write Parm 2 & 0 & 667 & 0 & & CP \\
\hline CP-432 DN Write Parm 3 & 0 & 667 & 0 & & CP \\
\hline CP-433 DN Write Parm 4 & 0 & 667 & 0 & & CP \\
\hline CP-434 DN Read Parm 1 & 0 & 667 & 0 & & CP or MP \\
\hline CP-435 DN Read Parm 2 & 0 & 667 & 0 & & CP or MP \\
\hline CP-436 DN Read Parm 3 & 0 & 667 & 0 & & CP or MP \\
\hline CP-437 DN Read Parm 4 & 0 & 667 & 0 & & CP or MP \\
\hline CP-438 DN MAC ID & 0 & 63 & 63 & & ID \\
\hline CP-439 DN Baud Rate & 1 & 3 & 1 & & Coded \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & \[
\begin{aligned}
& \text { USER } \\
& \text { RECORD }
\end{aligned}
\] & UNITS \\
\hline CP-440 Lg Number Parm & 1 & 667 & 40 & & CP or MP \\
\hline CP-441 Status Line 1 & 1 & 667 & 201 & & CP or MP \\
\hline CP-442 Status Line 2 & 0 & 667 & 50 & & CP or MP \\
\hline CP-443 Status Line 3 & 0 & 667 & 7 & & CP or MP \\
\hline CP-444 Status Line 4 & 0 & 667 & 17 & & CP or MP \\
\hline CP-445 Status Line 5 & 0 & 667 & 83 & & CP or MP \\
\hline CP-446 Status Line 6 & 0 & 667 & 84 & & CP or MP \\
\hline CP-449 Lg Number Units & 0 & 43 & 2 & & Coded \\
\hline CP-450 Diagnostics En & 0 & 3 & 0 & & Coded \\
\hline CP-451 Diag DO Shift & 0 & 8 & 0 & & Coded \\
\hline CP-452 Diag DO & 00000000 & 11111111 & 00000000 & & Coded \\
\hline CP-453 Diag DAC Test & 0 & 2 & 0 & & Coded \\
\hline CP-454 Diag DAC Volts & -15.0 & 15.0 & 0.0 & & Volts \\
\hline CP-455 Diag DAC Bits & -32768 & 32767 & 0 & & Bits \\
\hline CP-456 Diag Rmp Tm & 0 & 600 & 10.000 & & Seconds \\
\hline CP-460 Analog Cal En & 0 & 1 & 0 & & Coded \\
\hline CP-461 Analog Cal Sel & 1 & 2 & 1 & & Coded \\
\hline CP-462 Analog Cal Ref & 1 & 2 & 1 & & Coded \\
\hline CP-463 AnalogRef Val & -6.0 & 6 & 0 & & Volts \\
\hline CP-468 CRC Enable & 0 & 1 & 1 & & Coded \\
\hline CP-469 Record Format & 1 & 3 & 1 & & Coded \\
\hline CP-470 Device Address & 1 & 99 & 1 & & Address \\
\hline CP-471 Baud Rate & 1 & 7 & 6 & & Coded \\
\hline CP-472 Frame Format & 1 & 2 & 1 & & Coded \\
\hline CP-473 SerCom Char Out & 0 & 255 & 0 & & Decimal \\
\hline CP-474 Video Mode & 1 & 3 & 1 & & Coded \\
\hline CP-475 Contrast Value & 8 & 32 & 18 & & Contrast \\
\hline CP-478 Blk Sel Source & 1 & 3 & 1 & & Coded \\
\hline CP-479 Keypad Blk Sel & 0 & 7 & 0 & & Coded \\
\hline CP-480 KyPdLk Mask & 0 & 4 & 0 & & Coded \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & USER RECORD & UNITS \\
\hline CP-481 Unlock CP A & 0 & 667 & 0 & & CP \\
\hline CP-482 Unlock CP B & 0 & 667 & 0 & & CP \\
\hline CP-483 Unlock CP C & 0 & 667 & 0 & & CP \\
\hline CP-484 Unlock CP D & 0 & 667 & 0 & & CP \\
\hline CP-485 Unlock CP E & 0 & 667 & 0 & & CP \\
\hline CP-486 Unlock CP F & 0 & 667 & 0 & & CP \\
\hline CP-487 Unlock CP G & 0 & 667 & 0 & & CP \\
\hline CP-488 Unlock CP H & 0 & 667 & 0 & & CP \\
\hline CP-489 Unlock Block & 0 & 7 & 7 & & Block \# \\
\hline CP-490 Memory Test & 0 & 4 & 0 & & Coded \\
\hline CP-491 Clr Fault Cntrs & 0 & 1 & 0 & & Coded \\
\hline CP-492 Video Test & 0 & 1 & 0 & & Coded \\
\hline CP-495 Serial Number & 0 & 999999 & 0 & & Serial \# \\
\hline CP-496 Load Parms & 0 & 6 & 0 & & Coded \\
\hline CP-497 Load PLC Prgm & 0 & 2 & 0 & & Coded \\
\hline CP-498 Save Parms & 0 & 3 & 0 & & Coded \\
\hline CP-499 Save PLC Prgm & 0 & 1 & 0 & & Coded \\
\hline CP-500 Block Parm 1 & 0 & 349 & 210 & & CP \\
\hline CP-501 Block Parm 2 & 0 & 349 & 0 & & CP \\
\hline CP-502 Block Parm 3 & 0 & 349 & 0 & & CP \\
\hline CP-503 Block Parm 4 & 0 & 349 & 0 & & CP \\
\hline CP-504 Block Parm 5 & 0 & 349 & 0 & & CP \\
\hline CP-505 Block Parm 6 & 0 & 349 & 0 & & CP \\
\hline CP-506 Block Parm 7 & 0 & 349 & 0 & & CP \\
\hline CP-507 Block Parm 8 & 0 & 349 & 0 & & CP \\
\hline CP-508 Block Parm 9 & 0 & 349 & 0 & & CP \\
\hline CP-509 Block Parm 10 & 0 & 349 & 0 & & CP \\
\hline CP-510 Block Parm 11 & 0 & 349 & 0 & & CP \\
\hline CP-511 Block Parm 12 & 0 & 349 & 0 & & CP \\
\hline CP-512 Block Parm 13 & 0 & 349 & 0 & & CP \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & DEFAULT & \[
\begin{gathered}
\text { USER } \\
\text { RECORD }
\end{gathered}
\] & UNITS \\
\hline CP-513 & Block Parm 14 & 0 & 349 & 0 & & CP \\
\hline CP-514 & Block Parm 15 & 0 & 349 & 0 & & CP \\
\hline CP-515 & Block Parm 16 & 0 & 349 & 0 & & \[
\mathrm{CP}
\] \\
\hline CP-540 & Blk0 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-541 & Blk0 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-542 & Blk0 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-543 & \[
\text { Blk0 Val } 4
\] & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-544 & Blk0 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-545 & Blk0 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-546 & Blk0 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-547 & Blk0 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-548 & Blk0 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-549 & Blk0 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-550 & Blk0 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-551 & Blk0 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-552 & Blk0 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-553 & Blk0 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-554 & Blk0 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-555 & Blk0 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-556 & Blk 1 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-557 & Blk1 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-558 & Blk1 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-559 & Blk1 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-560 & Blk1 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-561 & Blk1 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-562 & Blk1 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-563 & Blk1 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-564 & Blk1 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-565 & Blk1 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-566 & Blk1 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & \[
\begin{gathered}
\text { USER } \\
\text { RECORD }
\end{gathered}
\] & UNITS \\
\hline CP-567 Blk1 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-568 Blk1 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-569 Blk1 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-570 Blk1 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-571 Blk1 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-572 Blk2 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-573 Blk2 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-574 Blk2 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-575 Blk2 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-576 Blk2 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-577 Blk2 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-578 Blk2 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-579 Blk2 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-580 Blk2 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-581 Blk2 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-582 Blk2 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-583 Blk2 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-584 Blk2 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-585 Blk2 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-586 Blk2 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-587 Blk2 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-588 Blk3 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-589 Blk3 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-590 Blk3 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-591 Blk3 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-592 Blk3 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-593 Blk3 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-594 Blk3 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-595 Blk3 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-596 Blk3 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & \[
\begin{gathered}
\text { USER } \\
\text { RECORD }
\end{gathered}
\] & UNITS \\
\hline CP-597 Blk3 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-598 Blk3 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-599 Blk3 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-600 Blk3 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-601 Blk3 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-602 Blk3 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-603 Blk3 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-604 Blk4 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-605 Blk4 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-606 Blk4 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-607 Blk4 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-608 Blk4 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-609 Blk4 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-610 Blk4 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-611 Blk4 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-612 Blk4 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-613 Blk4 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-614 Blk4 Val11 & -99999999 & 99999999 & 0 & & Parm Vall \\
\hline CP-615 Blk4 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-616 Blk4 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-617 Blk4 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-618 Blk4 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-619 Blk4 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-620 Blk5 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-621 Blk5 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-622 Blk5 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-623 Blk5 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-624 Blk5 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-625 Blk5 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-626 Blk5 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE DESCRIPTION & MIN & MAX & DEFAULT & \[
\begin{aligned}
& \text { USER } \\
& \text { RECORD }
\end{aligned}
\] & UNITS \\
\hline CP-627 Blk5 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-628 Blk5 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-629 Blk5 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-630 Blk5 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-631 Blk5 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-632 Blk5 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-633 Blk5 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-634 Blk5 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-635 Blk5 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-636 Blk6 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-637 Blk6 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-638 Blk6 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-639 Blk6 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-640 Blk6 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-641 Blk6 Val 6 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-642 Blk6 Val 7 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-643 Blk6 Val 8 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-644 Blk6 Val 9 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-645 Blk6 Val10 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-646 Blk6 Val11 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-647 Blk6 Val12 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-648 Blk6 Val13 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-649 Blk6 Val14 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-650 Blk6 Val15 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-651 Blk6 Val16 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-652 Blk7 Val 1 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-653 Blk7 Val 2 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-654 Blk7 Val 3 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-655 Blk7 Val 4 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline CP-656 Blk7 Val 5 & -99999999 & 99999999 & 0 & & Parm Val \\
\hline
\end{tabular}
(Continued)

\section*{Appendix D: Control Parameter Reference (continued)}

(Continued)
-NOTES-

\section*{APPENDIX E: MONITOR PARAMETER REFERENCE}
\begin{tabular}{|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & UNITS \\
\hline MP-01 & Uwnd Hz & -180000 & 180000 & Hertz \\
\hline MP-02 & UwndEncRPM & -99999.9 & 99999.9 & RPM \\
\hline MP-03 & UwndRollRPM & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-05 & UwndCnts & -2000000000 & 2000000000 & Counts \\
\hline MP-06 & UwndEstCtnt & 0.0 & 9999999.9 & EU \\
\hline MP-07 & UwndEstDia & 0.00 & 9999.99 & EU \\
\hline MP-09 & Uwnd Rot & -999999.9 & 999999.9 & Roll Rot \\
\hline MP-11 & Wind Hz & -180000 & 180000 & Hertz \\
\hline MP-12 & WindEncRPM & -99999.9 & 99999.9 & RPM \\
\hline MP-13 & WindRollRPM & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-15 & WindCnts & -2000000000 & 2000000000 & Counts \\
\hline MP-16 & WindEstCtnt & 0.0 & 9999999.9 & EU \\
\hline MP-17 & WindEstDia & 0.00 & 9999.99 & EU \\
\hline MP-19 & Wind Rot & -999999.9 & 999999.9 & Roll Rot \\
\hline MP-21 & UwndRRef & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-22 & UwndRR Err & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-23 & Uwnd Kff & 00.00 & 99999.99 & V/k RPM \\
\hline MP-24 & Uwnd FFwd & -15.00 & 15.00 & Volts \\
\hline MP-25 & Uwnd Intgrl & -15.00 & 15.00 & Volts \\
\hline MP-26 & Uwnd Trim & -15.00 & 15.00 & Volts \\
\hline MP-27 & UwndCO Volts & -15.00 & 15 & Volts \\
\hline MP-28 & UwndCO Bits & -32768 & 32767 & Bits \\
\hline MP-29 & UwndCOMaxBits & 0 & 32767 & Bits \\
\hline MP-31 & WindRRef & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-32 & WindRR Err & -99999.9 & 99999.9 & Roll RPM \\
\hline MP-33 & Wind Kff & 00.00 & 99999.99 & V/k RPM \\
\hline MP-34 & Wind FFwd & -15.00 & 15.00 & Volts \\
\hline MP-35 & Wind Intgrl & -15.00 & 15.00 & Volts \\
\hline MP-36 & Wind Trim & -15.00 & 15.00 & Volts \\
\hline MP-37 & WindCO Volts & -15.00 & 15 & Volts \\
\hline
\end{tabular}
(Continued)

\section*{Appendix E: Monitor Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & UNITS \\
\hline MP-38 & WindCO Bits & -32768 & 32767 & Bits \\
\hline MP-39 & WindCOMaxBits & 0 & 32767 & Bits \\
\hline MP-40 & Line Speed & -99999999 & 99999999 & EU/Tm \\
\hline MP-41 & LineSpdSRef & -99999999 & 99999999 & EU/Tm \\
\hline MP-42 & LineSpdRRef & -99999999 & 99999999 & EU/Tm \\
\hline MP-43 & EstMaxLnSpd & 0 & 99999999 & EU/Tm \\
\hline MP-48 & Uwnd State & 0 & 7 & Coded \\
\hline MP-49 & Wind State & 0 & 7 & Coded \\
\hline MP-50 & System State & 0 & 8 & Coded \\
\hline MP-51 & Active Blk & 0 & 7 & Coded \\
\hline MP-52 & InvalidBlks & 00000000 & 11111111 & Coded \\
\hline MP-53 & Misc Status & 00000000 & 11111111 & Coded \\
\hline MP-54 & Std Alms & 00000000 & 11111111 & Coded \\
\hline MP-55 & Custom Alms & 00000000 & 11111111 & Coded \\
\hline MP-56 & Misc Alarms & 00000000 & 11111111 & Coded \\
\hline MP-58 & Dancer State & 0 & 3 & Coded \\
\hline MP-59 & Setup State & 0 & 10 & Coded \\
\hline MP-60 & Uwnd Dirn & 0 & 2 & Coded \\
\hline MP-61 & Wind Dirn & 0 & 2 & Coded \\
\hline MP-70 & Wrap Pty & 00000000 & 00000011 & Coded \\
\hline MP-71 & SigPolarity & 00000000 & 11111111 & Coded \\
\hline MP-72 & UwndCntrlLp & 0 & 2 & Coded \\
\hline MP-73 & WindCntrlLp & 0 & 2 & Coded \\
\hline MP-80 & Dancer Bits & -8192 & 8191 & Bits \\
\hline MP-81 & Dancer Volts & -5.0 & 5 & Volts \\
\hline MP-82 & Dancer Ctnt & 0 & 9999999 & Web EU \\
\hline MP-83 & DncrCtntErr & -9999999 & 9999999 & Web EU \\
\hline MP-84 & Dancer Trim & -99999999 & 99999999 & EU/Tm \\
\hline MP-86 & Ext LS Bits & -8192 & 8191 & Bits \\
\hline MP-87 & Ext LS Volts & -5.0 & 5 & Volts \\
\hline
\end{tabular}
(Continued)

\section*{Appendix E: Monitor Parameter Reference (continued)}
\begin{tabular}{|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & UNITS \\
\hline MP-88 & Ext LineSpd & -999999 & 99999999 & EU/Tm \\
\hline MP-90 & SerCom Char In & 0 & 255 & Binary \\
\hline MP-91 & SerCom Errs & 00000000 & 11111111 & Coded \\
\hline MP-94 & ROM Test & 0 & 1 & Coded \\
\hline MP-95 & SRAM Test & 0 & 1 & Coded \\
\hline MP-96 & NV RAM Test & 0 & 1 & Coded \\
\hline MP-97 & Model \# & 1000 & 60000 & Model \# \\
\hline MP-98 & RELEASE & 090102 & 123105 & Date \\
\hline MP-99 & REVISION & 0.50 & 99.99 & Rev Level \\
\hline MP-100 & DI 7..0 & 00000000 & 11111111 & Coded \\
\hline MP-101 & DI 15..8 & 00000000 & 11111111 & Coded \\
\hline MP-102 & DO 7..0 & 00000000 & 11111111 & Coded \\
\hline MP-103 & KeyPad Lockout & 0 & 1 & Coded \\
\hline MP-107 & Tmr4 Time & 0 & 86400 & Seconds \\
\hline MP-108 & PLC Mon 1 Val & 0 & 1 & Coded \\
\hline MP-109 & PLC Mon 2 Val & 0 & 1 & Coded \\
\hline MP-110 & PLC 15-8 & 00000000 & 11111111 & Coded \\
\hline MP-111 & PLC 23-16 & 00000000 & 11111111 & Coded \\
\hline MP-112 & PLC 31-24 & 00000000 & 11111111 & Coded \\
\hline MP-113 & PLC 39-32 & 00000000 & 11111111 & Coded \\
\hline MP-114 & PLC 47-40 & 00000000 & 11111111 & Coded \\
\hline MP-115 & PLC 55-48 & 00000000 & 11111111 & Coded \\
\hline MP-116 & PLC 63-56 & 00000000 & 11111111 & Coded \\
\hline MP-117 & PLC 71-64 & 00000000 & 11111111 & Coded \\
\hline MP-118 & PLC 79-72 & 00000000 & 11111111 & Coded \\
\hline MP-119 & PLC 87-80 & 00000000 & 11111111 & Coded \\
\hline MP-120 & PLC 95-88 & 00000000 & 11111111 & Coded \\
\hline MP-121 & PLC 107-100 & 00000000 & 11111111 & Coded \\
\hline MP-122 & PLC 115-108 & 00000000 & 11111111 & Coded \\
\hline MP-123 & PLC 123-116 & 00000000 & 11111111 & Coded \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline CODE & DESCRIPTION & MIN & MAX & UNITS \\
\hline MP-124 & PLC 131-124 & 00000000 & 11111111 & Coded \\
\hline MP-125 & PLC 139-132 & 00000000 & 11111111 & Coded \\
\hline MP-126 & PLC 147-140 & 00000000 & 11111111 & Coded \\
\hline MP-127 & PLC 155-148 & 00000000 & 11111111 & Coded \\
\hline MP-128 & PLC 163-156 & 00000000 & 11111111 & Coded \\
\hline MP-129 & PLC 171-164 & 00000000 & 11111111 & Coded \\
\hline MP-130 & PLC 179-172 & 00000000 & 11111111 & Coded \\
\hline MP-131 & PLC 187-180 & 00000000 & 11111111 & Coded \\
\hline MP-132 & PLC 195-188 & 00000000 & 11111111 & Coded \\
\hline MP-133 & PLC 203-196 & 00000000 & 11111111 & Coded \\
\hline MP-134 & PLC 211-204 & 00000000 & 11111111 & Coded \\
\hline MP-135 & PLC 219-212 & 00000000 & 00001111 & Coded \\
\hline MP-150 & Last Reset & 00000000 & 11110111 & Coded \\
\hline MP-151 & Misc Intrpt & 00000000 & 00111111 & Coded \\
\hline MP-152 & Device Alms & 00000000 & 00001111 & Coded \\
\hline MP-153 & PC at Intrpt & 2560 & 524288 & Address \\
\hline MP-154 & Norm Pwr Ups & 1 & 65535 & Counts \\
\hline MP-155 & Low Pwr Cntr & 0 & 65535 & Counts \\
\hline MP-156 & Mem Err Cntr & 0 & 65535 & Counts \\
\hline MP-157 & WatchDogCntr & 0 & 65535 & Counts \\
\hline MP-158 & MiscIntrptCntr & 0 & 65535 & Counts \\
\hline MP-168 & AnlgCal Ref A & -6.0 & 6 & Volts \\
\hline MP-169 & AnlgCal Ref B & -6.0 & 6 & Volts \\
\hline
\end{tabular}
—NOTES—

\section*{APPENDIX F: CONTROL PARAMETER SCREEN LOCATOR}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-201 & Setpoint X ................ Setpoints \& Ramps\Line Speedlpg 1
................................. System Monitor\Run Monitorlpg 1
........................ System MonitorlControl Overrides\pg 4 \\
\hline CP-202 & App Select \(\qquad\) Setup\System Setup\pg 1
\(\qquad\) Setpoints \& Ramps\Line Speed\pg 1
\(\qquad\) Setpoints \& RampsiWeb Stretchlpg 1
\(\qquad\) Setpoints \& Ramps\Direct SP \& Ramps\pg 1 \\
\hline CP-203 & LineSpdSrc ............. Setpoints \& Ramps\Line Speedlpg 1 \\
\hline CP-207 &  \\
\hline CP-208 & UnitPrs Sel ............. Setup\System Setuplpg 1 \\
\hline CP-209 & Time Base .............. Setup\System Setup\pg 1 \\
\hline CP-210 & Line Spd SP ............................................tpoints \& Ramps\Line Speed\pg 1 \\
\hline CP-211 & Max LineSpd ........... Setpoints \& Ramps\Line Speedlpg 1 \\
\hline CP-212 & Min LineSpd ........... Setpoints \& Ramps\Line Speed\pg 1 \\
\hline CP-220 & Stretch \% ................ Setpoints \& Ramps\Web Stretch\pg 1 \\
\hline CP-221 & Stretch \% Max ........ Setpoints \& Ramps\Web Stretch\pg 1 \\
\hline CP-222 & Stretch \% Min ......... Setpoints \& RampslWeb Stretch\pg 1 \\
\hline CP-230 & UwndDirect SP ....... Setpoints \& Ramps\Direct SP \& Ramps\pg 1 \\
\hline CP-235 & WindDirect SP ........ Setpoints \& Ramps\Direct SP \& Ramps\pg 1 \\
\hline CP-240 & Jog SP ................... Setpoints \& Ramps\Jog SP \& Ramps\pg 1 \\
\hline CP-241 & Acl Tm Jog ............. Setpoints \& Ramps\Jog SP \& Ramps\pg 1 \\
\hline CP-242 & Acl Rt Jog .............. Setpoints \& Ramps\Jog SP \& Ramps\pg 1 \\
\hline CP-243 & Dcl Tm Jog............. Setpoints \& Ramps\Jog SP \& Ramps\pg 1 \\
\hline CP-244 & Dcl Rt Jog .............. Setpoints \& Ramps\Jog SP \& Ramps\pg 1 \\
\hline CP-250 &  \\
\hline
\end{tabular}
(Continued)

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline & ............................. Tuning\Dancerlpg 1 \\
\hline \multirow[t]{2}{*}{CP-260} & UwndGearRdcn ...... Setup\System Setuplpg 2 \\
\hline & ........ Scaling\Unwind\pg 1 \\
\hline \multirow[t]{2}{*}{CP-261} & Uwnd PPR .............. SetuplSystem Setuplpg 2 \\
\hline & .......... Scaling\Unwind\pg 1 \\
\hline \multirow[t]{3}{*}{CP-264} & UwndEncPty .......... Setup\System Setuplpg 5 \\
\hline & ............................. Setup\System Setuplpg 8 \\
\hline & ............................. Scaling\Unwind\pg 1 \\
\hline \multirow[t]{2}{*}{CP-265} & WindGearRden ....... SetuplSystem Setuplpg 2 \\
\hline & ............................. Scaling\Wind\pg 1 \\
\hline \multirow[t]{2}{*}{CP-266} & Wind PPR ............... Setup\System Setuplpg 2 \\
\hline & ............................. Scaling\Wind\pg 1 \\
\hline \multirow[t]{3}{*}{CP-269} & WindEncPty ........... Setup\System Setuplpg 5 \\
\hline & ............................. Setup\System Setuplpg 7 \\
\hline & ............................. Scaling\Wind\pg 1 \\
\hline \multirow[t]{2}{*}{CP-271} & DncrFullVolts .......... Setup\System Setuplpg 6 \\
\hline & ............................. Scaling\Dancerlpg 1 \\
\hline \multirow[t]{2}{*}{CP-272} & DncrCtntFull ........... Setup\System Setuplpg 6 \\
\hline & ............................. Scaling\Dancerlpg 1 \\
\hline \multirow[t]{2}{*}{CP-273} & DncrEmptyVlts ....... SetuplSystem Setuplpg 6 \\
\hline & ............................. Scaling\Dancer\pg 1 \\
\hline CP-276 & ExtLSMax Volts ....... Scaling\Ext Line Speed\pg 1 \\
\hline CP-277 & Ext LS Max ............. Scaling\Ext Line Speed\pg 1 \\
\hline CP-278 & ExtLSMinVolts ....... Scaling\Ext Line Speedlpg 1 \\
\hline CP-279 & Ext LS Min............. Scaling\Ext Line Speed\pg 1 \\
\hline \multirow[t]{2}{*}{CP-280} & UwndCO Mode ....... SetuplSystem Setuplpg 2 \\
\hline & ............................. Scaling\Unwind\pg 2 \\
\hline \multirow[t]{2}{*}{CP-281} & UwndCOMaxVolts .. SetuplSystem Setuplpg 2 \\
\hline & ............................. Scaling\Unwind\pg 2 \\
\hline \multirow[t]{3}{*}{CP-282} & UwndCO Plrty ........ SetuplSystem Setup\pg 5 \\
\hline & ............................. Setup\System Setuplpg 8 \\
\hline & ............................. Scaling\Unwind\pg 2 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}


\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline & ............................. Tuning\Dancer\pg 1 \\
\hline CP-333 & Wind Kp-p.............. Tuning\Velocity Looplpg 2 \\
\hline CP-335 & Wind Kp ................ Tuning\Velocity Looplpg 2 \\
\hline CP-336 & Wind Ki................. Tuning\Velocity Looplpg 2 \\
\hline CP-337 & Wind Kd................ Tuning\Velocity Looplpg 2 \\
\hline CP-338 & WindDerivThd ........ Tuning\Velocity Looplpg 3 \\
\hline CP-339 & Wind MaxRPM ........ Setup\System Setuplpg 2
.............................. Tuning\Feedforward\pg 2 \\
\hline CP-340 & Cntrl Latch ............. Available through the "CODE" key \\
\hline CP-341 & Loop Update ........... Tuning\Related Itemslpg 1 \\
\hline CP-342 &  \\
\hline CP-343 &  \\
\hline CP-344 & Kff Auto En ............... Tuning\Feedforwardlpg 1
.............................. Tuning\Feedforward\pg 2 \\
\hline CP-345 & DncrMinDelta ......... Tuning\Related Itemslpg 1 \\
\hline CP-346 & UwndMinDelta ....... Tuning\Related Itemslpg 1 \\
\hline CP-347 & WindMinDelta ........ Tuning\Related Itemslpg 1 \\
\hline CP-348 & Sig Fltr Sel ............. Tuning\Related Itemslpg 1 \\
\hline CP-349 & SigFltrTmConst ...... Tuning\Related Itemslpg 1 \\
\hline CP-350 &  \\
\hline CP-351 &  \\
\hline CP-352 & WindMinDia \(\qquad\) Setup\System Setup\pg 3
\(\qquad\) Scaling\Diameterslpg 1
\(\qquad\) Alarms \& Limits\Limits\pg 2 \\
\hline CP-353 & WindMaxDia............ Setup\System Setup\pg 3
............................ Scaling\Diameters\pg 1 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline \multirow[b]{2}{*}{CP-355} & ............................. Alarms \& Limits\Limits\pg 2 \\
\hline & Ramp Thd............... Setpoints \& Ramps\Run Ramps\pg 1 \\
\hline \multirow[t]{2}{*}{CP-356} & UwndTrim Auth ...... Tuning\Velocity Looplpg 3 \\
\hline & ............................. Alarms \& Limits\Limits\pg 1 \\
\hline \multirow[t]{2}{*}{CP-357} & UwndIntgrl Lmt ...... Tuning|Velocity Looplpg 3 \\
\hline & ............................. Alarms \& Limits\Limits\pg 1 \\
\hline \multirow[t]{2}{*}{CP-358} & WindTrim Auth ....... Tuning\Velocity Looplpg 3 \\
\hline & ............................. Alarms \& Limits\Limits\pg 1 \\
\hline \multirow[t]{2}{*}{CP-359} & WindIntgrl Lmt ....... Tuning\Velocity Looplpg 3 \\
\hline & ............................. Alarms \& Limits\Limits\pg 1 \\
\hline \multirow[t]{2}{*}{CP-361} & LoadDiaCalcEn ....... Setup\System Setup\pg 3 \\
\hline & .............................. Setup\System Setup\pg 4 \\
\hline \multirow[t]{2}{*}{CP-364} & UwndDiaPrst........... Setup\System Setup\pg 1 \\
\hline & Setup\System Setup\pg 4 \\
\hline \multirow[t]{2}{*}{CP-365} & WindDiaPrst............ Setup\System Setup\pg 1 \\
\hline & ............................. Setup\System Setup\pg 3 \\
\hline CP-366 & UwndCtntPrst.......... Setup\System Setup\pg 4 \\
\hline CP-367 & WindCtntPrst........... Setup\System Setup\pg 3 \\
\hline CP-368 & UwndCtntRO .......... Setup\System Setup\pg 4 \\
\hline CP-369 & WindCtntRO ........... Setup\System Setup\pg 3 \\
\hline \multirow[t]{2}{*}{CP-370} & Zero Speed ............. Alarms \& Limits\Alarms\pg 1 \\
\hline & Alarms \& Limits\Limitslpg 1 \\
\hline CP-371 & Max LS Alm........... Alarms \& Limits\Alarms\pg 1 \\
\hline CP-372 & NO Resp Time ........ Alarms \& Limits\Alarms\pg 1 \\
\hline CP-373 & UwndMax Rmp ....... Alarms \& Limits\Alarms\pg 1 \\
\hline CP-374 & WindMax Rmp ........ Alarms \& Limits\Alarms\pg 1 \\
\hline CP-378 & Std Alm Msk ........... Setup\Alm Indicator Masklpg 1 \\
\hline CP-379 & CustAlm Msk .......... Setup\Alm Indicator Masklpg 1 \\
\hline CP-380 & Cmpr1 Parm ........... Alarms \& Limits\Alarms\pg 2 \\
\hline CP-381 & Cmpr2 Parm ............ Alarms \& Limits\Alarmslpg 2 \\
\hline CP-382 & Cmpr3 Parm \(\qquad\) Alarms \& Limits\Alarms\pg 3 \\
\hline CP-383 & Cmpr4 Parm ............ Alarms \& Limits\Alarmslpg 3 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-386 & Cmpr1 Type ............ Alarms \& Limits\Alarms\pg 2 \\
\hline CP-387 & Cmpr2 Type............ Alarms \& Limits\Alarms\pg 2 \\
\hline CP-388 & Cmpr3 Type............ Alarms \& Limits\Alarms\pg 3 \\
\hline CP-389 & Cmpr4 Type............ Alarms \& Limits\Alarms\pg 3 \\
\hline CP-392 & Cmpr1 Val .............. Alarms \& Limits\Alarms\pg 2 \\
\hline CP-393 & Cmpr2 Val .............. Alarms \& Limits\Alarms\pg 2 \\
\hline CP-394 & Cmpr3 Val .............. Alarms \& Limits\Alarms\pg 3 \\
\hline CP-395 & Cmpr4 Val .............. Alarms \& Limits\Alarms\pg 3 \\
\hline CP-396 & Copy Source \(1 . . . . . . .\). PLC\PLC Data Copy 1 gg 1 \\
\hline CP-397 & Copy Dest 1 ............ PLC\PLC Data Copy\pg 1 \\
\hline CP-398 & Copy Source 2 ......... PLC\PLC Data Copylpg 1 \\
\hline CP-399 & Copy Dest 2 ............ PLC\PLC Data Copy 1 gg 1 \\
\hline CP-400 & Rmt Scroll .............. Setup\Remote Scroll Setup\pg 1 \\
\hline CP-401 & Rmt Scroll Rate ....... Setup\Remote Scroll Setup\pg 1 \\
\hline CP-402 & DI 1 Shot ................ PLC\Digital I/O\pg 1 \\
\hline CP-403 & DI Set .................... PLC\PLC Monitorlpg 1 \\
\hline CP-405 & PLC Monitor 1 ........ PLC\PLC Monitorlpg 1 \\
\hline CP-406 & PLC Monitor 2 ........ PLC\PLC Monitorlpg 1 \\
\hline CP-407 & PLC Bit Set ............ PLC\PLC Monitorlpg 1 \\
\hline CP-408 & PLC Bit Clear.......... PLC\PLC Monitorlpg 1 \\
\hline CP-410 & Tmr1 Delay ............. PLC\PLC Timers\pg 1 \\
\hline CP-411 & Tmr1 on Tm ............ PLC\PLC Timerslpg 1 \\
\hline CP-412 & Tmr2 Delay ............. PLC\PLC Timers\pg 1 \\
\hline CP-413 & Tmr2 on Tm ............ PLC\PLC Timerslpg 1 \\
\hline CP-414 & Tmr3 Delay ............. PLC\PLC Timers\pg 1 \\
\hline CP-415 & Tmr3 on Tm ............ PLC\PLC Timers\pg 1 \\
\hline CP-416 & Tmr4 Delay ............. PLC\PLC Timers\pg 1 \\
\hline CP-417 & Tmr4 on Tm ............ PLC\PLC Timers\pg 1 \\
\hline CP-420 & Cntr1 Trig............... PLC\PLC Event Cntrslpg 1 \\
\hline CP-421 & Cntr1 Cnt................ PLC\PLC Event Cntrslpg 1 \\
\hline CP-422 & Cntr2 Trig ............... PLC\PLC Event Cntrslpg 1 \\
\hline CP-423 & Cntr2 Cnt................ PLC\PLC Event Cntrslpg 1 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-424 & Cntr3 Trig............... PLC\PLC Event Cntrslpg 1 \\
\hline CP-425 & Cntr3 Cnt................ PLC\PLC Event Cntrslpg 1 \\
\hline CP-426 & Cntr4TrigUp ............ PLC\PLC Event Cntrslpg 1 \\
\hline CP-427 & Cntr4 Cnt................ PLC\PLC Event Cntrslpg 1 \\
\hline CP-428 & Cntr4TrigDn ............ PLC\PLC Event Cntrslpg 1 \\
\hline CP-429 & Cntr4Preset............. PLC\PLC Event Cntrslpg 1 \\
\hline CP-430 & DN Write Parm \(1 . .\). Setup\DeviceNet Setup\pg 2 \\
\hline CP-431 & DN Write Parm 2 .... Setup\DeviceNet Setup\pg 2 \\
\hline CP-432 & DN Write Parm 3 .... Setup\DeviceNet Setup\pg 2 \\
\hline CP-433 & DN Write Parm 4 .... Setup\DeviceNet Setup\pg 2 \\
\hline CP-434 & DN Read Parm 1 ..... Setup\DeviceNet Setup\pg 2 \\
\hline CP-435 & DN Read Parm 2 ..... Setup\DeviceNet Setup\pg 2 \\
\hline CP-436 & DN Read Parm 3 ..... Setup\DeviceNet Setup\pg 2 \\
\hline CP-437 & DN Read Parm 4 ..... Setup\DeviceNet Setup\pg 2 \\
\hline CP-438 & DN MAC ID ........... Setup\DeviceNet Setup\pg 1 \\
\hline CP-439 & DN Baud Rate ......... Setup\DeviceNet Setup\pg 1 \\
\hline CP-440 & Lg Number Parm..... SetuplStatus Screen Setuplpg 1 \\
\hline CP-441 & Status Line 1 ........... Setup\Status Screen Setuplpg 1 \\
\hline CP-442 & Status Line 2 ........... Setup\Status Screen Setuplpg 1 \\
\hline CP-443 & Status Line 3 ........... SetuplStatus Screen Setuplpg 1 \\
\hline CP-444 & Status Line 4 ........... SetuplStatus Screen Setup\pg 1 \\
\hline CP-445 & Status Line 5 ........... SetuplStatus Screen Setuplpg 1 \\
\hline CP-446 & Status Line 6 ........... Setup\Status Screen Setuplpg 1 \\
\hline CP-449 & Lg Number Units .... SetuplStatus Screen Setup\pg 1 \\
\hline CP-450 & Diagnostics En ........ Device Tests\Std Signals Testslpg 2
\(\qquad\) Device Tests\Digital I/O Testlpg 1 \\
\hline CP-451 & Diag DO Shift ......... Device Tests\Digital I/O Testlpg 1 \\
\hline CP-452 & Diag DO ................ Device Tests\Digital I/O Testlpg 1 \\
\hline CP-453 & Diag DAC Test ........ Device Tests\Std Signals Tests\pg 2 \\
\hline CP-454 & Diag DAC Volts ...... Device Tests\Std Signals Tests\pg 2 \\
\hline CP-455 & Diag DAC Bits ........ Device Tests\Std Signals Tests\pg 2 \\
\hline CP-456 & Diag Rmp Tm.......... Device Tests\Std Signals Tests\pg 2 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-460 & Analog Cal En ......... Device Tests\Analog Input Tests\pg 2 \\
\hline CP-461 & Analog Cal Sel ........ Device Tests\Analog Input Tests\pg 2 \\
\hline CP-462 & Analog Cal Ref ....... Device Tests\Analog Input Tests\pg 2 \\
\hline CP-463 & AnalogRef Val......... Device Tests\Analog Input Tests\pg 2 \\
\hline CP-468 & CRC Enable .............. Setup\Serial Comm Setup\pg 1 \\
\hline CP-469 & Record Format .......... Setup\Serial Comm Setuplpg 1
......................... Device Tests\Serial Comm Testlpg 1 \\
\hline CP-470 & Device Address ........ Setup\Serial Comm Setup\pg 1
............................ Device Tests\Serial Comm Testlpg 1 \\
\hline CP-471 & Baud Rate \(\qquad\) Setup\Serial Comm Setup\pg 1
\(\qquad\) Device Tests\Serial Comm Testlpg 1 \\
\hline CP-472 & Frame Format ............ Setup\Serial Comm Setup\pg 1
.......................... Device Tests\Serial Comm Testlpg 1 \\
\hline CP-473 & SerCom Char Out.... Device Tests\Serial Comm Testlpg 1 \\
\hline CP-474 & Video Mode \(\qquad\) SetuplVideo Setup\pg 1
\(\qquad\) Device Tests\Hardware Tests\pg 3 \\
\hline CP-475 & Contrast Value ........... Setup\Video Setup\pg 1
.......................... Device Tests\Hardware Tests\pg 3 \\
\hline CP-478 & Blk Sel Source \(\qquad\) Blocks\Block Selection\pg 1
\(\qquad\) System MonitorlControl Overrideslpg 4 \\
\hline CP-479 & Keypad Blk Sel \(\qquad\) Blocks\Block Selection\pg 1
\(\qquad\) System MonitorlControl Overrideslpg 4 \\
\hline CP-480 & KyPdLk Mask ........... Setup\Keypad Lock Setup\pg 1
............................ Setup\Keypad Lock Setup\pg 2 \\
\hline CP-481 & Unlock CP A .......... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-482 & Unlock CP B .......... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-483 & Unlock CP C .......... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-484 & Unlock CP D ........... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-485 & Unlock CP E........... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-486 & Unlock CP F ........... Setup\Keypad Lock Setup\pg 1 \\
\hline CP-487 & Unlock CP G ........... Setup\Keypad Lock Setup\pg 1 \\
\hline
\end{tabular}
(Continued)

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|c|}
\hline CP\# & CP Name & Screen \\
\hline CP-488 & Unlock CP H .. & Setup\Keypad Lock Setup\pg 1 \\
\hline CP-489 & Unlock Block . & Setup\Keypad Lock Setup\pg 2 \\
\hline CP-490 & Memory Test .. & Device Tests\Hardware Tests\pg 1 \\
\hline \multirow[t]{2}{*}{CP-491} & Clr Fault Cntrs & Device Tests\Device Status\pg 1 \\
\hline & & Device Tests\Device Status \(\\) pg 2 \\
\hline CP-492 & Video Test ..... & Device Tests\Hardware Tests Dpg 3 \\
\hline CP-495 & Serial Number & Setup\DeviceNet Setup\pg 1 \\
\hline CP-496 & Load Parms . & Setup\Load \& Save Parms Spg 1 \\
\hline CP-497 & Load PLC Prgm & Setup\Load \& Save Parms\pg 1 \\
\hline CP-498 & Save Parms .... & Setup\Load \& Save Parms\pg 1 \\
\hline CP-499 & Save PLC Prgm & Setup\Load \& Save Parms\pg 1 \\
\hline CP-500 & Block Parm 1 & Block Setup\Edit Block Parms\pg 1 \\
\hline CP-501 & Block Parm 2 & Block Setup\Edit Block Parms\pg 1 \\
\hline CP-502 & Block Parm 3 & Block Setup\Edit Block Parms\pg 1 \\
\hline CP-503 & Block Parm 4 & Block Setup\Edit Block Parms\pg 1 \\
\hline CP-504 & Block Parm 5 & Block Setup\Edit Block Parms\pg 2 \\
\hline CP-505 & Block Parm 6 & Block Setup\Edit Block Parms\pg 2 \\
\hline CP-506 & Block Parm 7 & Block Setup\Edit Block Parms\pg 2 \\
\hline CP-507 & Block Parm 8 & Block Setup\Edit Block Parms\pg 2 \\
\hline CP-508 & Block Parm 9 & Block Setup\Edit Block Parms\pg 3 \\
\hline CP-509 & Block Parm 10 & Block Setup\Edit Block Parms\pg 3 \\
\hline CP-510 & Block Parm 11. & Block Setup\Edit Block Parms\pg 3 \\
\hline CP-511 & Block Parm 12 & Block Setup\Edit Block Parms\pg 3 \\
\hline CP-512 & Block Parm 13 & Block Setup\Edit Block Parms\pg 4 \\
\hline CP-513 & Block Parm 14 & Block Setup\Edit Block Parms\pg 4 \\
\hline CP-514 & Block Parm 15 & Block Setup\Edit Block Parms\pg 4 \\
\hline CP-515 & Block Parm 16 & Block Setup\Edit Block Parms\pg 4 \\
\hline CP-540 & Blk0 Val \(1 . . . .\). & Block Setup\Edit Block 0\pg 1 \\
\hline CP-541 & Blk0 Val \(2 . . .\). & Block Setup\Edit Block 0\pg 1 \\
\hline CP-542 & Blk0 Val 3 ...... & Block Setup\Edit Block 0\pg 1 \\
\hline CP-543 & Blk0 Val \(4 \ldots .\). & Block Setup\Edit Block 0\pg 1 \\
\hline CP-544 & Blk0 Val 5 ....... & Block Setup\Edit Block 0\pg 2 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|c|}
\hline CP\# & CP Name & Screen \\
\hline CP-545 & Blk0 Val 6 & Block SetuplEdit Block 0 1 pg 2 \\
\hline CP-546 & Blk0 Val 7. & Block Setup\Edit Block 0\pg 2 \\
\hline CP-547 & Blk0 Val 8 & Block Setup\Edit Block 0\pg 2 \\
\hline CP-548 & Blk0 Val 9. & Block Setup\Edit Block 0\pg 3 \\
\hline CP-549 & Blk0 Val10 & Block Setup\Edit Block 0\pg 3 \\
\hline CP-550 & Blk0 Val11. & Block Setup\Edit Block 0\pg 3 \\
\hline CP-551 & Blk0 Val12 & Block Setup\Edit Block 0\pg 3 \\
\hline CP-552 & Blk0 Val13 & Block Setup\Edit Block 0\pg 4 \\
\hline CP-553 & Blk0 Val14 & Block Setup\Edit Block 0\pg 4 \\
\hline CP-554 & Blk0 Val15 & Block SetuplEdit Block 0\pg 4 \\
\hline CP-555 & Blk0 Val16 & Block SetuplEdit Block 0\pg 4 \\
\hline CP-556 & Blk 1 Val 1. & Block SetuplEdit Block 1\pg 1 \\
\hline CP-557 & Blk 1 Val 2 & Block SetuplEdit Block 1\pg 1 \\
\hline CP-558 & Blk1 Val 3 & Block SetuplEdit Block 1\pg 1 \\
\hline CP-559 & Blk1 Val 4 & Block SetuplEdit Block 1\pg 1 \\
\hline CP-560 & Blk1 Val 5 & Block SetuplEdit Block 1\pg 2 \\
\hline CP-561 & Blk1 Val 6 & Block SetuplEdit Block 1\pg 2 \\
\hline CP-562 & Blk1 Val 7 & Block SetuplEdit Block 1\pg 2 \\
\hline CP-563 & Blk1 Val 8 & Block Setup\Edit Block 1\pg 2 \\
\hline CP-564 & Blk1 Val 9 & Block Setup\Edit Block 1\pg 3 \\
\hline CP-565 & Blk1 Val10 & Block Setup\Edit Block 1\pg 3 \\
\hline CP-566 & Blk1 Val11. & Block Setup\Edit Block 1\pg 3 \\
\hline CP-567 & Blk1 Val12 & Block Setup\Edit Block 1\pg 3 \\
\hline CP-568 & Blk1 Val13 & Block Setup\Edit Block 1\pg 4 \\
\hline CP-569 & Blk1 Val14 & Block Setup\Edit Block 1\pg 4 \\
\hline CP-570 & Blk1 Val15 & Block Setup\Edit Block 1\pg 4 \\
\hline CP-571 & Blk1 Val16 & Block Setup\Edit Block 1\pg 4 \\
\hline CP-572 & Blk2 Val 1 & Block Setup\Edit Block 2\pg 1 \\
\hline CP-573 & Blk2 Val 2 & Block Setup\Edit Block 2\pg 1 \\
\hline CP-574 & Blk2 Val 3 & Block Setup\Edit Block 2\pg 1 \\
\hline CP-575 & Blk2 Val 4 & Block Setup\Edit Block 2\pg 1 \\
\hline CP-576 & Blk2 Val 5 & Block Setup\Edit Block 2\pg 2 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|c|}
\hline CP\# & CP Name & Screen \\
\hline CP-577 & Blk2 Val 6 . & Block Setup\Edit Block 2\pg 2 \\
\hline CP-578 & Blk2 Val 7. & Block Setup\Edit Block 2\pg 2 \\
\hline CP-579 & Blk2 Val 8 . & Block Setup\Edit Block 2\pg 2 \\
\hline CP-580 & Blk2 Val 9 . & Block Setup\Edit Block 2\pg 3 \\
\hline CP-581 & Blk2 Val10 & Block Setup\Edit Block 2\pg 3 \\
\hline CP-582 & Blk2 Val11. & Block Setup\Edit Block 2\pg 3 \\
\hline CP-583 & Blk2 Val12 & Block Setup\Edit Block 2\pg 3 \\
\hline CP-584 & B1k2 Val13 & Block Setup\Edit Block 2\pg 4 \\
\hline CP-585 & B1k2 Val14 & Block Setup\Edit Block 2\pg 4 \\
\hline CP-586 & B1k2 Val15 & Block Setup\Edit Block 2\pg 4 \\
\hline CP-587 & Blk2 Val16 & Block Setup\Edit Block 2\pg 4 \\
\hline CP-588 & Blk3 Val 1. & Block Setup\Edit Block 3\pg 1 \\
\hline CP-589 & Blk3 Val 2. & Block Setup\Edit Block 3\pg 1 \\
\hline CP-590 & Blk3 Val 3. & Block Setup\Edit Block 3\pg 1 \\
\hline CP-591 & Blk3 Val 4. & Block Setup\Edit Block 3\pg 1 \\
\hline CP-592 & Blk3 Val 5. & Block Setup\Edit Block 3\pg 2 \\
\hline CP-593 & Blk3 Val 6. & Block Setup\Edit Block 3\pg 2 \\
\hline CP-594 & Blk 3 Val 7. & Block Setup\Edit Block 3\pg 2 \\
\hline CP-595 & Blk3 Val 8. & Block Setup\Edit Block 3\pg 2 \\
\hline CP-596 & Blk 3 Val 9. & Block Setup\Edit Block 3\pg 3 \\
\hline CP-597 & Blk3 Val10 & Block Setup\Edit Block 3\pg 3 \\
\hline CP-598 & Blk3 Val11. & Block Setup\Edit Block 3\pg 3 \\
\hline CP-599 & Blk3 Val12 & Block Setup\Edit Block 3\pg 3 \\
\hline CP-600 & Blk3 Val13 & Block Setup\Edit Block 3\pg 4 \\
\hline CP-601 & Blk3 Val14 & Block Setup\Edit Block 3\pg 4 \\
\hline CP-602 & Blk3 Val15 & Block Setup\Edit Block 3\pg 4 \\
\hline CP-603 & Blk3 Val16 & Block Setup\Edit Block 3\pg 4 \\
\hline CP-604 & Blk4 Val 1 & Block SetuplEdit Block 4lpg 1 \\
\hline CP-605 & Blk4 Val 2 & Block Setup\Edit Block 4\pg 1 \\
\hline CP-606 & Blk4 Val 3 & Block SetuplEdit Block 4lpg 1 \\
\hline CP-607 & Blk4 Val 4 & Block SetuplEdit Block 4lpg 1 \\
\hline CP-608 & Blk 4 Val 5. & Block Setup\Edit Block 4\pg 2 \\
\hline
\end{tabular}
(Continued)

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-609 & Blk4 Val 6 .............. Block Setup\Edit Block 4\pg 2 \\
\hline CP-610 & Blk4 Val 7 ............... Block Setup\Edit Block 4\pg 2 \\
\hline CP-611 & Blk4 Val 8 ............... Block Setup\Edit Block 4\pg 2 \\
\hline CP-612 & Blk4 Val 9 .............. Block Setup\Edit Block 4\pg 3 \\
\hline CP-613 & Blk4 Val10 ............. Block Setup\Edit Block 4\pg 3 \\
\hline CP-614 & Blk4 Val11 ............... Block Setup\Edit Block 4\pg 3 \\
\hline CP-615 & Blk4 Val12 ............. Block Setup\Edit Block 4\pg 3 \\
\hline CP-616 & Blk4 Val13 ............. Block Setup\Edit Block 4\pg 4 \\
\hline CP-617 & Blk4 Val14 ............. Block Setup\Edit Block 4\pg 4 \\
\hline CP-618 & Blk4 Val15 ............. Block Setup\Edit Block 4\pg 4 \\
\hline CP-619 & Blk4 Val16 ............. Block Setup\Edit Block 4\pg 4 \\
\hline CP-620 & Blk5 Val 1 .............. Block Setup\Edit Block 5\pg 1 \\
\hline CP-621 & Blk5 Val 2 .............. Block Setup\Edit Block 5\pg 1 \\
\hline CP-622 & Blk5 Val 3 .............. Block Setup\Edit Block 5\pg 1 \\
\hline CP-623 & Blk5 Val 4 .............. Block Setup\Edit Block 5\pg 1 \\
\hline CP-624 & Blk5 Val 5 .............. Block Setup\Edit Block 5\pg 2 \\
\hline CP-625 & Blk5 Val 6 .............. Block Setup\Edit Block 5\pg 2 \\
\hline CP-626 & Blk5 Val 7 ............... Block Setup\Edit Block 5\pg 2 \\
\hline CP-627 & Blk5 Val 8 .............. Block Setup\Edit Block 5\pg 2 \\
\hline CP-628 & Blk5 Val 9 ............... Block Setup\Edit Block 5\pg 3 \\
\hline CP-629 & Blk5 Val10 .............. Block Setup\Edit Block 5\pg 3 \\
\hline CP-630 & Blk5 Val11 .............. Block Setup\Edit Block 5\pg 3 \\
\hline CP-631 & Blk5 Val12 ............. Block Setup\Edit Block 5\pg 3 \\
\hline CP-632 & Blk5 Val13 ............. Block Setup\Edit Block 5\pg 4 \\
\hline CP-633 & Blk5 Val14 ............. Block Setup\Edit Block 5\pg 4 \\
\hline CP-634 & Blk5 Val15 .............. Block Setup\Edit Block 5\pg 4 \\
\hline CP-635 & Blk5 Val16 ............. Block Setup\Edit Block 5\pg 4 \\
\hline CP-636 & Blk6 Val 1 ............... Block Setup\Edit Block 6lpg 1 \\
\hline CP-637 & Blk6 Val 2 .............. Block Setup\Edit Block 6lpg 1 \\
\hline CP-638 & Blk6 Val 3 ............... Block Setup\Edit Block 6lpg 1 \\
\hline CP-639 & Blk6 Val 4 ............... Block Setup\Edit Block 6lpg 1 \\
\hline CP-640 & Blk6 Val 5 .............. Block Setup\Edit Block 6\pg 2 \\
\hline
\end{tabular}

\section*{Appendix F: Control Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline CP\# & CP Name Screen \\
\hline CP-641 & Blk6 Val 6 ............... Block Setup\Edit Block 61pg 2 \\
\hline CP-642 & Blk6 Val 7 .............. Block Setup\Edit Block 6\pg 2 \\
\hline CP-643 & Blk6 Val 8 .............. Block Setup\Edit Block 6\pg 2 \\
\hline CP-644 & Blk6 Val 9 ............... Block Setup\Edit Block 6\pg 3 \\
\hline CP-645 & Blk6 Val10 ............. Block Setup\Edit Block 6\pg 3 \\
\hline CP-646 & Blk6 Val11 .............. Block Setup\Edit Block 6\pg 3 \\
\hline CP-647 & Blk6 Val12 ............. Block Setup\Edit Block 6\pg 3 \\
\hline CP-648 & Blk6 Val13 ............. Block Setup\Edit Block 6lpg 4 \\
\hline CP-649 & Blk6 Val14 .............. Block Setup\Edit Block 6lpg 4 \\
\hline CP-650 & Blk6 Val15 .............. Block Setup\Edit Block 6lpg 4 \\
\hline CP-651 & Blk6 Val16 .............. Block Setup\Edit Block 6lpg 4 \\
\hline CP-652 & Blk7 Val 1 ............... Block Setup\Edit Block 7\pg 1 \\
\hline CP-653 & Blk7 Val 2 ............... Block Setup\Edit Block 7\pg 1 \\
\hline CP-654 & Blk7 Val 3 .............. Block Setup\Edit Block 7\pg 1 \\
\hline CP-655 & Blk7 Val 4 .............. Block Setup\Edit Block 7\pg 1 \\
\hline CP-656 & Blk 7 Val 5 .............. Block Setup\Edit Block 7\pg 2 \\
\hline CP-657 & Blk7 Val 6 .............. Block Setup\Edit Block 7\pg 2 \\
\hline CP-658 & Blk7 Val 7 .............. Block Setup\Edit Block 7\pg 2 \\
\hline CP-659 & Blk7 Val 8 .............. Block Setup\Edit Block 7\pg 2 \\
\hline CP-660 & Blk7 Val 9 .............. Block Setup\Edit Block 7\pg 3 \\
\hline CP-661 & Blk7 Val10 ............. Block Setup\Edit Block 7\pg 3 \\
\hline CP-662 & Blk7 Val11 .............. Block Setup\Edit Block 7\pg 3 \\
\hline CP-663 & Blk7 Val12 ............. Block Setup\Edit Block 7\pg 3 \\
\hline CP-664 & Blk7 Val13 ............. Block Setup\Edit Block 7\pg 4 \\
\hline CP-665 & Blk7 Val14 ............. Block Setup\Edit Block 7\pg 4 \\
\hline CP-666 & Blk7 Val15 ............. Block Setup\Edit Block 7\pg 4 \\
\hline CP-667 & Blk7 Val16 ............. Block Setup\Edit Block 7\pg 4 \\
\hline
\end{tabular}

\section*{APPENDIX G: MONITOR PARAMETER SCREEN LOCATOR}

\(\left.\begin{array}{|lll|}\hline \text { MP\# } & \text { MP Name } & \text { Screen } \\ \hline & \text {................................ Scaling\Wind\pg 1 } \\ & \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . ~ S e t p o i n t s ~ \& ~ R a m p s \ D i r e c t ~ S P ~ \& ~ R a m p s \ p g ~ 1 ~\end{array}\right]\)

\section*{Appendix G: M onitor Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline MP\# & MP Name Screen \\
\hline & \(\qquad\) System Monitor\Run Monitorlpg 2
\(\qquad\) System MonitorlStd Signals Monitorlpg 3 Device Tests\Std Signals Tests\pg 2 \\
\hline MP-28 & UwndCO Bits ..............................................ingtem MonitorlStd Signals Monitorlpg 3 \\
\hline MP-29 & UwndCO Max Bits . Scaling\Unwind\pg 2
\(\qquad\) System MonitorlStd Signals Monitorlpg 3 \\
\hline MP-31 & WindRRef ............... System Monitor\Run Monitorlpg 3 \\
\hline MP-32 & WindRR Err \(\qquad\) Tuning\Velocity Loop\pg 2
\(\qquad\) System Monitor\Run Monitorlpg 3 \\
\hline MP-33 & Wind Kff ................ Tuning\Feedforward\pg 2 \\
\hline MP-34 & Wind FFwd ............. Tuning\Feedforward\pg 2 \\
\hline MP-35 &  \\
\hline MP-36 &  \\
\hline MP-37 &  \\
\hline MP-38 & \begin{tabular}{l}
WindCO Bits ........... Scaling\Wind\pg 2 \\
................................ System Monitor\Std Signals Monitorlpg 3
\end{tabular} \\
\hline MP-39 & WindCOMaxBits .... Scaling|Windlpg 2
\(\qquad\) System MonitorlStd Signals Monitorlpg 3 \\
\hline MP-40 &  \\
\hline
\end{tabular}

\section*{Appendix G: M onitor Parameter Screen Locator (continued)}
\begin{tabular}{|c|c|}
\hline MP\# & MP Name Screen \\
\hline MP-41 & LineSpdSRef ........... System Monitor\Run Monitorlpg 1 \\
\hline MP-42 & LineSpdRRef .......... System Monitor\Run Monitorlpg 1 \\
\hline MP-43 & EstMaxLnSpd ......... System MonitorlRun Monitorlpg 1 \\
\hline MP-48 &  \\
\hline MP-49 &  \\
\hline MP-50 &  \\
\hline MP-51 & Active Blk ................. System MonitorlLimits \& Alarms\pg 2
.......................... System Monitor\Control Overrides\pg 4 \\
\hline MP-52 & InvalidBlks ............. System MonitorlLimits \& Alarmslpg 2 \\
\hline MP-53 & Misc Status ............. System Monitor\Limits \& Alarms\pg 2 \\
\hline MP-54 & Std Alms ................. System Monitor\Limits \& Alarmslpg 2 \\
\hline MP-55 & Custom Alms ........... System MonitorlLimits \& Alarms\pg 2 \\
\hline MP-56 & Misc Alarms ............ System MonitorlLimits \& Alarms\pg 2 \\
\hline MP-58 & Dancer State ............ Setup\System Setuplpg 6
................................ Scaling\Dancerlpg 1
............................... Setpoints \& Ramps\Dancerlpg 1
........................ Tuning\Dancerlpg 1
................................ System Monitor\Analog Monitorlpg 1 \\
\hline
\end{tabular}
\begin{tabular}{|lll|}
\hline MP\# & MP Name & Screen \\
\hline MP-59 & Setup State ............... Setup\System Setup\pg 1 \\
& \(\ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ S e t u p \ S y s t e m ~ S e t u p \ p g ~\) & 3 \\
& \(\ldots . . . . . . . . . . . . . . . . . . . . . ~ S e t u p \ S y s t e m ~ S e t u p \ p g ~\) & 1
\end{tabular}
\begin{tabular}{|c|c|}
\hline MP\# & MP Name Screen \\
\hline MP-82 &  \\
\hline MP-83 & DncrCtnt Err ........... Status\pg 1
............................... Setpoints \& Ramps\Dancerlpg 1
................................. Tuning\Dancerlpg 1
....................... System MonitorlRun Monitorlpg 1
............................... System Monitor\Analog Monitorlpg 1 \\
\hline MP-84 &  \\
\hline MP-86 & Ext LS Bits \(\qquad\) Scaling \(\backslash\) Ext Line Speed\pg 1
\(\qquad\) System Monitor\Analog Monitor\pg 1
\(\qquad\) Device Tests\Analog Input Testslpg 1
\(\qquad\) Device Tests\Analog Input Tests\pg 2 \\
\hline MP-87 & Ext LS Volts \(\qquad\) Scaling\Ext Line Speed\pg 1
\(\qquad\) System Monitor\Analog Monitor\pg 1
\(\qquad\) Device Tests\Analog Input Tests\pg 1
\(\qquad\) Device Tests\Analog Input Tests\pg 2 \\
\hline MP-88 & Ext LineSpd ............. Scaling\Ext Line Speed\pg 1
.......................... Setpoints \& Ramps\Line Speed\pg 1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline MP-116 & PLC 63-56............ PLC\PLC Monitorlpg 2 \\
\hline MP-117 & PLC 71-64 ............. PLC\PLC Monitor\pg 2 \\
\hline MP-118 & PLC 79-72 ............. PLC\PLC Monitorlpg 2 \\
\hline MP-119 & PLC 87-80 ............. PLC\PLC Monitorlpg 2 \\
\hline MP-120 & PLC 95-88 ............. PLC\PLC Monitorlpg 2 \\
\hline MP-121 & PLC 107-100 .......... PLC\PLC Monitorlpg 3 \\
\hline MP-122 & PLC 115-108 .......... PLC\PLC Monitorlpg 3 \\
\hline MP-123 & PLC 123-116 .......... PLC\PLC Monitorlpg 3 \\
\hline MP-124 & PLC 131-124 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-125 & PLC 139-132 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-126 & PLC 147-140 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-127 & PLC 155-148 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-128 & PLC 163-156 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-129 & PLC 171-164 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-130 & PLC 179-172 .......... PLC\PLC Monitor\pg 3 \\
\hline MP-131 & PLC 187-180 .......... PLC\PLC Monitor\pg 4 \\
\hline MP-132 & PLC 195-188 .......... PLC\PLC Monitor\pg 4 \\
\hline MP-133 & PLC 203-196 .......... PLC\PLC Monitor\pg 4 \\
\hline MP-134 & PLC 211-204 .......... PLC\PLC Monitor\pg 4 \\
\hline MP-135 & PLC 219-212 .......... PLC\PLC Monitor\pg 4 \\
\hline MP-150 & Last Reset............... Device Tests\Device Status\pg 1 \\
\hline & ... Device Tests\Device Status\pg 2 \\
\hline MP-151 & Misc Intrpt.............. Device Tests\Device Status\pg 1 \\
\hline & ... Device Tests\Device Status\pg 2 \\
\hline MP-152 & Device Alms ........... Device Tests\Device Status\pg 1 \\
\hline MP-153 & PC at Intrpt ............. Device Tests Device Status\pg \(2^{2}\) \\
\hline MP-154 & Norm Pwr Ups ........ Device Tests\Device Status\pg 1 \\
\hline MP-155 & Low Pwr Cntr......... Device Tests\Device Status\pg 1 \\
\hline MP-156 & Mem Err Cntr ......... Device Tests\Device Status\pg 1 \\
\hline MP-157 & WatchDogCntr ....... Device Tests\Device Status\pg 1 \\
\hline MP-158 & MiscIntrptCntr ....... Device Tests\Device Status\pg 2 \\
\hline MP-168 & AnlgCal Ref A ........ Device Tests\Analog Input Tests Dpg 2 \\
\hline MP-169 & AnlgCal Ref B ........ Device Tests\Analog Input Tests\pg 2 \\
\hline
\end{tabular}

\section*{APPENDIX H: ERROR CODE DEFINITIONS}
\begin{tabular}{|c|c|}
\hline Error & Definition \\
\hline Acl Tm High & Acceleration time is too high. \\
\hline Acl too Hi & Acceleration rate is too high. \\
\hline Adrs Error & Address Error, there is an internal address conflict with the CPU. \\
\hline Bad Blk Calc & During calculations for one of the parameter blocks, an error was encountered causing the block to be marked as bad. The block parameter value(s) in error should be corrected. \\
\hline Bad Blk Sel & An attempt was made to switch to a bad parameter block. \\
\hline Binary Only & The number is Binary, only " 1 's" and " 0 's" may be entered. \\
\hline BkUp Loaded & Prompt which displays on completion of loading a code parameter backup into main CP list. \\
\hline Blk Parm Err & An error was encountered in the block parameters. \\
\hline Blk Val Err & An error was encountered in the block values of a block. \\
\hline Buss Error & There is an internal buss conflict with the CPU. \\
\hline ChkSm Error & Checksum Error, the checksum calculated for memory data is not correct. \\
\hline Dcl Tm High & Deceleration time is too high. \\
\hline Default Set & Prompt after resetting a parameter back to its default value. \\
\hline Defaults Set & Prompt after resetting all parameters back to their default values. \\
\hline Divide By 0 & Math error has occurred internal resulting in divide by zero. \\
\hline DP Present & Decimal point already present in the number you are entering. \\
\hline Dspl Error & Display Error, an error has occurred when attempting to display a parameter (e.g., the parameter does not exist). \\
\hline Field Full & The maximum number of characters (digits, decimal point, negative sign) allowed for parameter entry has been reached while entering a number via the keypad. You tried to enter more numbers/characters than will fit into the space allotted for the parameter value entry. \\
\hline Flts Cleared & Prompt to indicate that the faults have been cleared, as a result of entering a 1 into Clr Fault Cntrs (CP-491) \\
\hline Gen Intrpt & Some error occurred during the controls program execution to cause a General Interrupt. \\
\hline
\end{tabular}

\section*{Appendix H: Error Code Definitions (continued)}
\begin{tabular}{|ll|}
\hline Error & Definition \\
\hline Halt Monitor & \begin{tabular}{l} 
Reset caused by microprocessor or double bus fault. \\
Illegal Inst \\
Illegal Instruction.
\end{tabular} \\
Invalid Cmd & \begin{tabular}{l} 
An invalid command was encountered during compilation of the \\
PLC program.
\end{tabular} \\
Invalid Opnd & \begin{tabular}{l} 
An invalid operand was encountered during compilation of the PLC \\
program.
\end{tabular} \\
Invalid Parm & \begin{tabular}{l} 
The parameter requested is not defined and therefore is invalid. \\
KyPd Lockout \\
The keypad is locked out, disallowing entry for this parameter \\
through the keypad.
\end{tabular} \\
LgWd Ovfl & \begin{tabular}{l} 
There was a Long Word Overflow as a result of some internal \\
calculation.
\end{tabular} \\
LossOf Clock & \begin{tabular}{l} 
There is no clock signal. Last reset caused by the detection of no \\
clock signal.
\end{tabular} \\
Low Power & \begin{tabular}{l} 
The device's AC input voltage level is low (below the required \\
specification).
\end{tabular} \\
Max Error & \begin{tabular}{l} 
The parameter value just entered is above the maximum allowed for \\
the parameter.
\end{tabular} \\
Max Res Met & \begin{tabular}{l} 
The maximum number of digits to the right of the decimal point for \\
the parameter being entered has already been met (an attempt was \\
made to exceed this limit).
\end{tabular} \\
Max SP Error & \begin{tabular}{l} 
The value just entered for the setpoint exceeds the value set in its \\
corresponding Max SP (211,221).
\end{tabular} \\
Memory Fail & \begin{tabular}{l} 
Indicates that a memory test has failed. \\
Indicates that the memory test has passed.
\end{tabular} \\
Memory Pass & \begin{tabular}{l} 
An internal memory error was encountered.
\end{tabular} \\
Memory Error Error & \begin{tabular}{l} 
The parameter value last entered exceeded the minimum value \\
allowed for the parameter. \\
The value just entered for the setpoint exceeds the value set in its \\
corresponding Min SP (212,222).
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix H: Error Code Definitions (continued)}
\begin{tabular}{|ll|}
\hline Error & Definition \\
\hline Minus First & \begin{tabular}{l} 
When entering the value for this parameter the minus sign (-) must \\
be entered first.
\end{tabular} \\
No <END> & \begin{tabular}{l} 
During compilation of the PLC program, no END command was \\
found.
\end{tabular} \\
No Cmpr Parm & Invalid comparison parameter entered. \\
Not Allowed & The last action attempted is not allowed. \\
Not Processd & \begin{tabular}{l} 
The request for a parameter value change was not processed due to a \\
"combo" check error that occurred as a result of some calculation \\
for a related parameter value or a parameter in a block of \\
parameters. May be the result of a block parameter transfer to the
\end{tabular} \\
control via serial communications.
\end{tabular}

\section*{Appendix H: Error Code Definitions (continued)}
\begin{tabular}{|c|c|}
\hline Error & Definition \\
\hline Res Error & The resolution for the last parameter value exceeded the limits for that parameter (result of a parameter value change using serial communications). \\
\hline ROM Failed & Indicates that the memory test for the internal ROM part has failed. \\
\hline ROM Passed & Indicates that the memory test for the internal ROM part has passed. \\
\hline RUN Lockout & Indicates that the parameter entry is locked out during run. An attempt was made to enter a parameter value into a parameter that is locked out during run while the control is in run. \\
\hline Saved 2 BkUp & Prompt to indicate that the data has been saved to backup storage for later use. \\
\hline SP too High & The setpoint is too high. \\
\hline SP too Low & The setpoint is too low. \\
\hline Speed too Hi & The speed is too high. \\
\hline SRAM Failed & Indicates that the memory test for the internal RAM part has failed. \\
\hline SRAM Passed & Indicates that the memory test for the internal RAM part has passed. \\
\hline Test Module & Reset caused by microprocessor's test sub-module. \\
\hline UImpd Intrpt & An error has occurred while the CPU was processing to cause an unimplemented interrupt. \\
\hline Watch Dog & The internal CPU watch dog timer has timed out. CPU is out of time and is not able to function correctly. \\
\hline
\end{tabular}
-NOTES-

\section*{APPENDIX I: SERIAL COMMUNICATIONS ERROR CODE DEFINITIONS}
\begin{tabular}{|c|c|c|}
\hline \# & Name & Definition \\
\hline 0 & OK & Request processed \\
\hline 1 & General Data Error & A non-specified error occurred as a result of the last serial communications transmission. Check the contents of the last message transmission against the protocol definition. \\
\hline 2 & Res Error & The resolution for the Control Parameter value exceeds the minimum or maximum that is allowed. \\
\hline 3 & Invalid Parm & The requested parameter does not exist. \\
\hline 4 & String too long & The custom engineering units string that was sent exceeds the 15 character limit and was truncated to 15 characters. \\
\hline 5 & Out of Range & The parameter requested is above or below the available number of parameters, or the address requested for a memory read is not within the memory address range. \\
\hline 6 & Not Allowed & The request is not allowed. \\
\hline 7 & Lockout During RUN & An attempt was made to change a parameter value for a parameter that is locked out during run, while the control is in run (state). \\
\hline 8 & Not Ready & The CX-1102 was "not ready" to receive the last request. \\
\hline 9 & Block Parm Error & An error was encountered while processing a block parameter request. \\
\hline 10 & Block Value Error & An error was encountered while processing a block value request. \\
\hline 11 & Parm Memory Limit & The internal memory limit for block parameters was exceeded during processing of a block parameter change. \\
\hline 12 & MIN Error & There was an attempt to exceed the minimum value allowed for a parameter value. \\
\hline
\end{tabular}

\section*{Appendix I: Serial CommunicationsError Code Definitions (continued)}
\begin{tabular}{|c|c|c|}
\hline \# & Name & Definition \\
\hline 13 & Max Error & There was an attempt to exceed the maximum value allowed for a parameter value. \\
\hline 14 & Invalid Command PLC & An invalid command was encountered during compilation of the PLC program. \\
\hline 15 & Invalid Operand PLC & An invalid operand was encountered during compilation of the PLC program. \\
\hline 16 & No <END> PLC & No END command was found during compilation of the PLC program. \\
\hline 17 & PLC Memory Limit & The internal memory limit for the PLC program was reached while compiling the PLC program. The PLC program should be reduced in size. \\
\hline 18 & Defaults Loaded & The default parameter values have been loaded into the Control Parameters. \\
\hline 19 & Backup Loaded & The backup parameter values have been loaded into the Control Parameters. \\
\hline 20 & Backup Saved & The Control Parameter values have been saved to backup storage. \\
\hline 21 & Checksum Error & A checksum calculation error has occurred as a result of the last request. \\
\hline 22 & Faults Cleared & The fault counters have been cleared. \\
\hline 23 & Passed & The requested memory test passed. \\
\hline 24 & Failed & The requested memory test failed. \\
\hline 25 & No Compare Parm & No compare parameter. \\
\hline 26 & Divide by Zero & The last request caused a "divide by zero" in an internal calculation. \\
\hline 27 & Long Word Overflow & The last request caused a "long word overflow" in an internal calculation. \\
\hline 28 & Parm Transfer Limit Error & An attempt was made to exceed the maximum number of parameters allowed for a request. \\
\hline
\end{tabular}

\section*{Appendix I: Serial Communications Error Code Definitions (continued)}
\begin{tabular}{|ll|}
\hline \# Name & Definition \\
\hline 29 Memory Read too Long & \begin{tabular}{l} 
An attempt was made to read too many bytes of \\
memory at one time.
\end{tabular} \\
30 Data Length Error & \begin{tabular}{l} 
The "data field" length did not match the length \\
expected for the specific serial communications \\
function request.
\end{tabular} \\
32 Not Processed Msg & \begin{tabular}{l} 
The last serial communications function request was \\
not processed due to a combinational check error. One \\
or more of the parameters in the block of parameters \\
sent caused an error. \\
The serial communications function that was \\
requested, is not defined in the list of allowed \\
functions. Check the protocol definition.
\end{tabular} \\
\hline
\end{tabular}
-NOTES-

\section*{APPENDIX J: PLC DEFAULT PROGRAM LOGIC}

(Continued)

\section*{Appendix J: Default PLC Program Logic (continued)}


\footnotetext{
* Cmpr2 is setup as Unwind Ramped Reference Error (RR - FB \(>\) Cmpr2 Val)
** Cmpr3 is setup as W ind Ramped Reference Error (RR - FB \(>\) Cmpr3 Val)
*** Cmpr4 is setup as W ind Roll Full Alarm (W ind Diameter \(\geq\) Cmpr4 Val)
}

\section*{APPENDIX K: PLC PROGRAM COMMANDS}
\begin{tabular}{|l|c|c|}
\hline Command Description & Decimal: & Hexidecimal: \\
\hline END Command & 224 & E0 \\
\hline LOAD Command & 225 & E1 \\
\hline AND Command & 226 & E2 \\
\hline OR Command & 228 & E4 \\
\hline Exclusive OR Command (XOR) & 229 & E5 \\
\hline NOT Command & 232 & E8 \\
\hline LOAD NOT Command & 233 & E9 \\
\hline AND NOT Command & 234 & EA \\
\hline OR NOT Command & 237 & EC \\
\hline Exclusive OR NOT Command & 240 & ED \\
\hline OUT Command & 255 & F0 \\
\hline NOP Command & FF \\
\hline
\end{tabular}

\section*{APPENDIX L: PLC PROGRAM OPERANDS}
\begin{tabular}{|c|c|c|}
\hline Op & Name & Related CP \\
\hline 0 & S0 & \\
\hline 1 & S1 & \\
\hline 2 & ZERO \(=0\), off state & \\
\hline 3 & ONE \(=1\), on state & \\
\hline 4 & Pwr-Up 1 (on) for 1st PLC Scan & \\
\hline 5 & Reserved & \\
\hline 6 & Reserved & \\
\hline 7 & Reserved & \\
\hline 8 & DI_8, Default - UJogF, Unwind Jog Forward & \\
\hline 9 & DI_9, Default - UJogR, Unwind Jog Reverse & \\
\hline 10 & DI_10, Default - WJogF, Wind Jog Forward & \\
\hline 11 & DI_11, Default - WJogR, Wind Jog Reverse & \\
\hline 12 & DI_12, Default - UuWrp, Unwind Under Wrap & \\
\hline 13 & DI_13, Default - WuWrp, Wind Under Wrap & \\
\hline 14 & DI_14, Default - LSRvs, Line Speed Reverse & \\
\hline 15 & DI_15, Default - WbRst, Web Reset & \\
\hline 16 & Lch1 Out, Latch 1 Output & \\
\hline 17 & Lch2 Out, Latch 2 Output & \\
\hline 18 & Lch3 Out, Latch 3 Output & \\
\hline 19 & Lch4 Out, Latch 4 Output & \\
\hline 20 & Uw@MaxDia, Unwind at Maximum Diameter & . CP-351 \\
\hline 21 & Uw@MinDia, Unwind at Minimum Diameter . & . CP-350 \\
\hline 22 & Wd@MaxDia, Wind at Maximum Diameter . & . CP-353 \\
\hline 23 & Wd@MinDia, Wind at Minimum Diameter .. & . CP-352 \\
\hline 24 & Tmr1 Out, Timer 1 Output ......... & . CP-410,CP-411 \\
\hline 25 & Tmr2 Out, Timer 2 Output ... & . CP-412,CP-413 \\
\hline 26 & Tmr3 Out, Timer 3 Output . & . CP-414,CP-415 \\
\hline 27 & Tmr4 Out, Timer 4 Output ..... & . CP-416,CP-417 \\
\hline 28 & Reserved & \\
\hline 29 & Reserved & \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|c|c|}
\hline Op & Name Related CP \\
\hline 30 & HiLineSpd, High Line Speed Alarm ..................................... CP-371 \\
\hline 31 & LnSpdLmt, LineSpdSRef > EstMaxLnSpd \\
\hline 32 & Cntr1 Out, Counter 1 Output ............................................. CP-420,CP-421 \\
\hline 33 & Cntr2 Out, Counter 2 Output ............................................. CP-422,CP-423 \\
\hline 34 & Cntr3 Out, Counter 3 Output ............................................. CP-424,CP-425 \\
\hline 35 & Cntr4UpO, Counter 4 Up Counter Output ............................. CP-426,CP-427 \\
\hline 36 & Cntr4DnO, Counter 4 Down Counter Output ........................ CP-428,CP-427 \\
\hline 37 & Low Power, Low Power Indication \\
\hline 38 & UwndCtntRO, UwndEstCtnt >= UwndCtntRO \\
\hline 39 & WindCtntRO, WindEstCtnt >= WindCtntRO \\
\hline 40 & UwCOSign, Unwind Control Output Sign ( \(1=\) Negative) ........ CP-282,MP-27 \\
\hline 41 & UwndDrvEn, Unwind Drive Enable \\
\hline 42 & UwRmpActv, Unwind Ramp Active ....................................... CP-355 \\
\hline 43 & UwRR@0Spd, Unwind Ramped Reference at '0' Speed .......... CP-370 \\
\hline 44 & UwFb@0Spd, Unwind Feedback at '0' Speed ......................... CP-370 \\
\hline 45 & UwMxFbSpd, Unwind at Maximum Feedback Speed .............. CP-329 \\
\hline 46 & UwMxAcDcl, Unwind at Maximum Accel/Decel .................... CP-373 \\
\hline 47 & UwMtrNRsp, Unwind Motor/Drive NOT Responding ............ CP-372 \\
\hline 48 & UwndMaxHz, Unwind Feedback is >= Maximum Freq (Hz) ... MP-01 \\
\hline 49 & Uw@MxVlts, Unwind Control Output at Maximum Volts ....... CP-281 \\
\hline 50 & WdCOSign, Wind Control Output Sign ( \(1=\) Negative) ........... CP-287,MP-37 \\
\hline 51 & WindDrvEn, Wind Drive Enable \\
\hline 52 & WdRmpActv, Wind Ramp Active ........................................ CP-355 \\
\hline 53 & WdRR@0Spd, Wind Ramped Reference at '0' Speed ............. CP-370 \\
\hline 54 & WdFb@0Spd, Wind Feedback at '0' Speed ........................... CP-370 \\
\hline 55 & WdMxFbSpd, Wind at Maximum Feedback Speed ................. CP-339 \\
\hline 56 & WdMxAcDcl, Wind at Maximum Accel/Decel ...................... CP-374 \\
\hline 57 & WdMtrNRsp, Wind Motor/Drive NOT Responding ................ CP-372 \\
\hline 58 & WindMaxHz, Wind Feedback is >= Maximum Freq (Hz) ........ MP-11 \\
\hline 59 & Wd@MxVlts, Wind Control Output at Maximum Volts ........... CP-286 \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|c|c|}
\hline Op & Name Related CP \\
\hline 60 & Cmpr1 Out, Numerical Comparator 1 result ......................... CP-380,386,392 \\
\hline 61 & Cmpr2 Out, Numerical Comparator 2 result ......................... CP-381,387,393 \\
\hline 62 & Cmpr3 Out, Numerical Comparator 3 result ......................... CP-382,388,394 \\
\hline 63 & Cmpr4 Out, Numerical Comparator 4 result ......................... CP-383,389,395 \\
\hline 64 & Both DT Uw, App1 - Both - Dancer Trimmed Unwind ............. CP-202 \\
\hline 65 & Both DT Wd, App2 - Both - Dancer Trimmed Wind ............... CP-202 \\
\hline 66 & Uwnd DT Uw, App3 - Unwind - Dancer Trimmed follower ..... CP-202 \\
\hline 67 & Wind DT Wd, App4 - Wind Dancer Trimmed follower ............ CP-202 \\
\hline 68 & Reserved \\
\hline 69 & Reserved \\
\hline 70 & OneSecSqW, One Second Square Wave Output \\
\hline 71 & F-Stop, F-Stop State (Monitor Only) ................................... MP-50 \\
\hline 72 & Unload, Unload State (Monitor Only) .................................. MP-50 \\
\hline 73 & H-Stop, H-Stop State (Monitor Only) .................................. MP-50 \\
\hline 74 & Load, Load State (Monitor Only) ........................................ MP-50 \\
\hline 75 & Run, Run State (Monitor Only) ........................................... MP-50 \\
\hline 76 & Jog , Jog State (Monitor Only) ........................................... MP-50 \\
\hline 77 & Reserved \\
\hline 78 & Setup, Setup State (Monitor Only) ...................................... MP-50 \\
\hline 79 & DiagState, Diagnostics State (Monitor Only)......................... MP-50 \\
\hline 80 & Blk Sel 0, Block 0 Selected (Active) - (Monitor Only) ............ MP-51 \\
\hline 81 & Blk Sel 1, Block 1 Selected (Active) .................................... MP-51 \\
\hline 82 & Blk Sel 2, Block 2 Selected (Active) .................................... MP-51 \\
\hline 83 & Blk Sel 3, Block 3 Selected (Active) .................................... MP-51 \\
\hline 84 & B1k Sel 4, Block 4 Selected (Active) .................................... MP-51 \\
\hline 85 & Blk Sel 5, Block 5 Selected (Active) .................................... MP-51 \\
\hline 86 & Blk Sel 6, Block 6 Selected (Active) .................................... MP-51 \\
\hline 87 & Blk Sel 7, Block 7 Selected (Active) .................................... MP-51 \\
\hline 88 & UwndRvs, Unwind Roll Reverse command indicated \\
\hline 89 & WindRvs, Wind Roll Reverse command indicated \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|lll|}
\hline Op & Name & Related CP \\
\hline 90 & DncrFull, Dancer Full > 95\% .............................................................................................82, MP-82 \\
91 & DncrEmpty, Dancer Empty < 5\% ............................ CP-272,MP-82 \\
92 & DncrErPos, Dancer Error Positive = DncrCtnt > DncrSP ........ \\
93 & Web Broken, Web Broken State \\
94 & DncrLded, Dancer Loaded - dancer @ position \(\pm 5 \%\)............... CP250,272,MP82 \\
95 & DncrIgnor, Dancer Ignored \\
96 & Reserved (Not accessible) \\
97 & Reserved (Not accessible) \\
98 & Reserved (Not accessible) \\
99 & Reserved (Not accessible) \\
100 & DO_0, Default - UwdEn, Unwind Enable \\
101 & DO_1, Default - WdEn, Wind Enable \\
102 & DO_2, Default - UErr, Unwind Error \\
103 & DO_3, Default - WErr, Wind Error \\
104 & DO_4, Default - WRIFl, Wind Roll Full \\
105 & DO_5, Default - Dncr, Dancer \\
106 & DO_6, Default - WbBrk, Web Break \\
107 & DO_7, Default - Spare, Spare \\
108 & Tmp1, Temporary Control Relay 1, CR1 \\
109 & Tmp2, Temporary Control Relay 2, CR2 \\
110 & Tmp3, Temporary Control Relay 3, CR3 \\
111 & Tmp4, Temporary Control Relay 4, CR4 \\
112 & Tmp5, Temporary Control Relay 5, CR5 \\
113 & Tmp6, Temporary Control Relay 6, CR6 \\
114 & Tmp7, Temporary Control Relay 7, CR7 \\
115 & Tmp8, Temporary Control Relay 8, CR8 \\
116 & Lch1 Set, Latch 1 Set \\
117 & Lch2 Set, Latch 2 Set \\
118 & Lch3 Set, Latch 3 Set \\
119 & Lch4 Set, Latch 4 Set & \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}


\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|c|c|c|}
\hline Op & Name & Related CP \\
\hline \multicolumn{3}{|l|}{150 WdRstCtnt, Wind Reset Content to Preset value .................... CP-367} \\
\hline \multicolumn{3}{|l|}{151 UwFrzIngl, Unwind Freeze Integral (Freeze at current value) .. MP-25} \\
\hline \multicolumn{3}{|l|}{152 WdFrzIngl, Wind Freeze Integral (Freeze at Current Value) .... MP-35} \\
\hline \multicolumn{3}{|l|}{153 UwUndrWrp, Unwind Underwrap conf} \\
\hline \multicolumn{3}{|l|}{154 WdUndrWrp, Wind Underwrap configuratio} \\
\hline \multicolumn{3}{|l|}{155 UwRot Rst} \\
\hline \multicolumn{3}{|l|}{156 WdRot Rst} \\
\hline \multicolumn{3}{|l|}{157 NoDncrTrm, No Dancer Trim} \\
\hline \multicolumn{3}{|l|}{158 LSFrzRamp, Line Speed Freeze Ramp} \\
\hline \multicolumn{3}{|l|}{159 Negate LS, Negate Line Speed Scaled Reference} \\
\hline \multicolumn{3}{|l|}{160 Data Copy 1} \\
\hline \multicolumn{3}{|l|}{161 Data Copy 2} \\
\hline \multicolumn{3}{|l|}{162 Reserved} \\
\hline \multicolumn{3}{|l|}{163 Reserved} \\
\hline \multicolumn{3}{|l|}{164 Reserved} \\
\hline \multicolumn{3}{|l|}{165 Reserved} \\
\hline \multicolumn{3}{|l|}{166 Reserved} \\
\hline \multicolumn{3}{|l|}{167 StrtTrace, Start Data Trace} \\
\hline \multicolumn{3}{|l|}{168 Scroll Up, Remote Scroll Up .............................................. CP-400,CP-401} \\
\hline \multicolumn{3}{|l|}{169 Scroll Dn, Remote Scroll Down .......................................... CP-400,CP-401} \\
\hline \multicolumn{3}{|l|}{170 Reserved} \\
\hline \multicolumn{3}{|l|}{171 NOP Opnd, No Operation Operand} \\
\hline \multicolumn{3}{|l|}{172 Reserved} \\
\hline \multicolumn{3}{|l|}{173 Reserved} \\
\hline \multicolumn{3}{|l|}{174 Reserved} \\
\hline \multicolumn{3}{|l|}{175 Reserved} \\
\hline \multicolumn{3}{|l|}{176 LED 5 GRN, Illuminate LED 5 Green} \\
\hline \multicolumn{3}{|l|}{177 LED 5 RED, Illuminate LED 5 Red} \\
\hline \multicolumn{3}{|l|}{178 LED 6 GRN, Illuminate LED 6 Green} \\
\hline 179 & LED 6 RED, Illuminate LED 6 Red & \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|lll|}
\hline Op & Name & Related CP \\
\hline 180 & SysFStpRq, Request System State change to F-Stop State \\
181 & Reserved \\
182 & UwJgFwdRq, Request Unwind Axis Jog Forward State \\
183 & UwJgRvsRq, Request Unwind Axis Jog Reverse State \\
184 & WdJgFwdRq, Request Wind Axis Jog Forward State \\
185 & WdJgRvsRq, Request Wind Axis Jog Reverse State \\
186 & UwOpnLpRq, Request Unwind Axis Open Loop control \\
187 & WdOpnLpRq, Request Wind Axis Open Loop control \\
188 & Reserved \\
189 & Reserved \\
190 & Reserved \\
191 & Reserved \\
192 & Reserved \\
193 & Reserved \\
194 & Reserved \\
195 & Reserved \\
196 & Reserved \\
197 & Reserved \\
198 & Reserved \\
199 & Reserved \\
200 & UwndOpnLp, Unwind in Open Loop mode \\
201 & WindOpnLp, Wind in Open Loop mode \\
202 & Reserved \\
203 & Reserved \\
204 & UwndFStop, Unwind in F-Stop State \\
205 & UwndHStop, Unwind in H-Stop State \\
206 & UwndRUN, Unwind in Run State \\
207 & Reserved \\
208 & UwndJgFwd, Unwind in Jog Forward State \\
209 & UwndJgRvs, Unwind in Jog Reverse State \\
\hline
\end{tabular}

\section*{Appendix L: PLC Program Operands (continued)}
\begin{tabular}{|lll|}
\hline Op & Name & Related CP \\
\hline 210 & UwndJgStp, Unwind in Jog Stop State & \\
211 & UwndDiag, Unwind in Diagnostics State & \\
212 & WindFStop, Wind in F-Stop State \\
213 & WindHStop, Wind in H-Stop State \\
214 & WindRUN, Wind in Run State \\
215 & Reserved \\
216 & WindJgFwd, Wind in Jog Forward State & \\
217 & WindJgRvs, Wind in Jog Reverse State \\
218 & WindJgStp, Wind in Jog Stop State \\
219 & WindDiag, Wind in Diagnostics State &
\end{tabular}

\section*{APPENDIX M: WIRING DIAGRAM EXAMPLES}


Figure M-1 Start/Stop Wiring Connections without Relays


Figure M-2 Start/Stop Wiring Connections with Relays


Figure M-3 Start/Stop Wiring Connections with Armature Contactor
-NOTES-

\section*{APPENDIX N: FAX COVER SHEET}

Date: \(\qquad\)

\section*{Atten: Contrex Technical Support}

From:
Name \(\qquad\) Company Name \(\qquad\)
Telephone \# \(\qquad\) Ext \# \(\qquad\) Fax \# \(\qquad\)
We have \(\qquad\) CX-1102(s) that are used for: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Serial Communication Hookup: \(\qquad\) Yes \(\qquad\) No

Brief Description of the Problem: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Contrex Fax \#=(763) 424-8734}

We are transmitting \(\qquad\) pages, including:

This Cover Sheet,
A copy of Appendix D w/ the User Record completed,
-NOTES-

\section*{APPENDIX 0: REVISION LOG}
\begin{tabular}{|c|c|c|c|l|}
\hline \begin{tabular}{c} 
Manual \\
Revision
\end{tabular} & \begin{tabular}{c} 
ECO \\
Number
\end{tabular} & \begin{tabular}{c} 
Revision \\
Date
\end{tabular} & \begin{tabular}{c} 
Corresponding \\
Software Rev.
\end{tabular} & Pages Changed \\
\hline A & - & \(03 / 04\) & \begin{tabular}{c}
\(1000-8023\) \\
Rev. 1.0
\end{tabular} & New Manual Release \\
\hline & & & & \\
\hline
\end{tabular}
* Software revisions may not mandate manual changes. If your software revision is more recent than what is reflected here, use the the most current revision of the manual.
-NOTES-

\section*{Index}

\section*{A}

Acl Rt Jog page C-44, D-1, F-1 Acl Rt RUN page C-50, D-2, F-3 Acl Tm Drct page C-50, D-2, F-3 Acl Tm High page \(\mathrm{H}-1\)
Acl Tm Jog page C-44, D-1, F-1
Acl Tm RUN page C-49, D-2, F-3
Acl too Hi page \(\mathrm{H}-1\)
Active Blk page C-8, E-2, G-4
Active Block page 6-20
Adrs Error page H-1
Analog Cal En page 8-17, C-80, D-6, F-8 Analog Cal Ref page 8-17, C-80, D-6, F-8 Analog Cal Sel page 8-17, C-80, D-6, F-8 Analog Ref Val page 8-17, C-81, D-6, F-8 Anlg Cal Ref A page 8-17, C-40, E-4, G-8 Anlg Cal Ref B page 8-17, C-40, E-4, G-8 App Select page 5-34, 5-40, C-41, D-1, F-1

\section*{B}

Backup Loaded page I-2
Backup Saved page I-2
Bad Blk Calc page H-1
Bad Blk Sel page \(\mathrm{H}-1\)
Baud Rate page 8-18, C-81, D-6, F-8
Binary Only page \(\mathrm{H}-1\)
BkUp Loaded page \(\mathrm{H}-1\)
Blk Parm Err page H-1
Blk Sel Source page 6-20, C-82, D-6, F-8
Blk Val Err page H-1
Block Parameters
Block Parm 1 page D-7, F-9
Block Parm 2 page D-7, F-9
Block Parm 3 page D-7, F-9
Block Parm 4 page D-7, F-9
Block Parm 5 page D-7, F-9
Block Parm 6 page D-7, F-9
Block Parm 7 page D-7, F-9
Block Parm 8 page D-7, F-9
Block Parm 9 page D-7, F-9
Block Parm 10 page D-7, F-9
Block Parm 11 page D-7, F-9
Block Parm 12 page D-7, F-9
Block Parm 13 page D-7, F-9
Block Parm 14 page D-8, F-9
Block Parm 15 page D-8, F-9
Block Parm 16 page D-8, F-9
Block Parm Error page I-1
Block Value Error page I-1
Block Values
Blk0 Val 1 page D-8, F-9
Blk0 Val 2 page D-8, F-9
Blk0 Val 3 page D-8, F-9
Blk0 Val 4 page D-8, F-9
Blk0 Val 5 page D-8, F-9
Blk0 Val 6 page D-8, F-10

Blk0 Val 7 page D-8, F-10
Blk0 Val 8 page D-8, F-10
Blk0 Val 9 page D-8, F-10
Blk0 Val 10 page D-8, F-10
Blk0 Val 11 page D-8, F-10
Blk0 Val 12 page D-8, F-10
Blk0 Val 13 page D-8, F-10
Blk0 Val 14 page D-8, F-10
Blk0 Val 15 page D-8, F-10
Blk0 Val 16 page D-8, F-10
Blk1 Val 1 page D-8, F-10
Blk1 Val 2 page D-8, F-10
Blk1 Val 3 page D-8, F-10
Blk1 Val 4 page D-8, F-10
Blk1 Val 5 page D-8, F-10
Blk1 Val 6 page D-8, F-10
Blk1 Val 7 page D-8, F-10
Blk1 Val 8 page D-8, F-10
Blk1 Val 9 page D-8, F-10
Blk1 Val 10 page D-8, F-10
Blk1 Val 11 page D-8, F-10
Blk1 Val 12 page D-9, F-10
Blk1 Val 13 page D-9, F-10
Blk1 Val 14 page D-9, F-10
Blk1 Val 15 page D-9, F-10
Blk1 Val 16 page D-9, F-10
Blk2 Val 1 page D-9, F-10
Blk2 Val 2 page D-9, F-10
Blk2 Val 3 page D-9, F-10
Blk2 Val 4 page D-9, F-10
Blk2 Val 5 page D-9, F-10
Blk2 Val 6 page D-9, F-11
Blk2 Val 7 page D-9, F-11
Blk2 Val 8 page D-9, F-11
Blk2 Val 9 page D-9, F-11
Blk2 Val 10 page D-9, F-11
Blk2 Val 11 page D-9, F-11
Blk2 Val 12 page D-9, F-11
Blk2 Val 13 page D-9, F-11
Blk2 Val 14 page D-9, F-11
Blk2 Val 15 page D-9, F-11
Blk2 Val 16 page D-9, F-11
Blk3 Val 1 page D-9, F-11
Blk3 Val 2 page D-9, F-11
Blk3 Val 3 page D-9, F-11
Blk3 Val 4 page D-9, F-11
Blk3 Val 5 page D-9, F-11
Blk3 Val 6 page D-9, F-11
Blk3 Val 7 page D-9, F-11
Blk3 Val 8 page D-9, F-11
Blk3 Val 9 page D-9, F-11
Blk3 Val 10 page D-10, F-11
Blk3 Val 11 page D-10, F-11
Blk3 Val 12 page D-10, F-11
Blk3 Val 13 page D-10, F-11
Blk3 Val 14 page D-10, F-11
Blk3 Val 15 page D-10, F-11
Blk3 Val 16 page D-10, F-11

Blk4 Val 1 page D-10, F-11
Blk4 Val 2 page D-10, F-11
Blk4 Val 3 page D-10, F-11
Blk4 Val 4 page D-10, F-11
Blk4 Val 5 page D-10, F-11
Blk4 Val 6 page D-10, F-12
Blk4 Val 7 page D-10, F-12
Blk4 Val 8 page D-10, F-12
Blk4 Val 9 page D-10, F-12
Blk4 Val 10 page D-10, F-12
Blk4 Val 11 page D-10, F-12
Blk4 Val 12 page D-10, F-12
Blk4 Val 13 page D-10, F-12
Blk4 Val 14 page D-10, F-12
Blk4 Val 15 page D-10, F-12
Blk4 Val 16 page D-10, F-12
Blk5 Val 1 page D-10, F-12
Blk5 Val 2 page D-10, F-12
Blk5 Val 3 page D-10, F-12
Blk5 Val 4 page D-10, F-12
Blk5 Val 5 page D-10, F-12
Blk5 Val 6 page D-10, F-12
Blk5 Val 7 page D-10, F-12
Blk5 Val 8 page D-11, F-12
Blk5 Val 9 page D-11, F-12
Blk5 Val 10 page D-11, F-12
Blk5 Val 11 page D-11, F-12
Blk5 Val 12 page D-11, F-12
Blk5 Val 13 page D-11, F-12
Blk5 Val 14 page D-11, F-12
Blk5 Val 15 page D-11, F-12
Blk5 Val 16 page D-11, F-12
Blk6 Val 1 page D-11, F-12
Blk6 Val 2 page D-11, F-12
Blk6 Val 3 page D-11, F-12
Blk6 Val 4 page D-11, F-12
Blk6 Val 5 page D-11, F-12
Blk6 Val 6 page D-11, F-13
Blk6 Val 7 page D-11, F-13
Blk6 Val 8 page D-11, F-13
Blk6 Val 9 page D-11, F-13
Blk6 Val 10 page D-11, F-13
Blk6 Val 11 page D-11, F-13
Blk6 Val 12 page D-11, F-13
Blk6 Val 13 page D-11, F-13
Blk6 Val 14 page D-11, F-13
Blk6 Val 15 page D-11, F-13
Blk6 Val 16 page D-11, F-13
Blk7 Val 1 page D-11, F-13
Blk7 Val 2 page D-11, F-13
Blk7 Val 3 page D-11, F-13
Blk7 Val 4 page D-11, F-13
Blk7 Val 5 page D-11, F-13
Blk7 Val 6 page D-12, F-13
Blk7 Val 7 page D-12, F-13
Blk7 Val 8 page D-12, F-13
Blk7 Val 9 page D-12, F-13
Blk7 Val 10 page D-12, F-13
Blk7 Val 11 page D-12, F-13
Blk7 Val 12 page D-12, F-13
Blk7 Val 13 page D-12, F-13
Blk7 Val 14 page D-12, F-13
Blk7 Val 15 page D-12, F-13

Blk7 Val 16 page D-12, F-13
Buss Error page H-1

\section*{C}

Checksum Error page I-2
ChkSm Error page H-1
Clear-7 page 8-31
Clear-8 page \(8-31\)
Clear-9 page 8-32
Clr Fault Cntrs page 8-20, 8-21, C-85, D-7, F-9
Cmpr1 Parm page C-63, D-4, F-5
Cmpr1 Type page C-65, D-4, F-6
Cmpr1 Val page C-67, D-4, F-6
Cmpr 2 Parm page C-64, D-4, F-5
Cmpr2 Type page C-65, D-4, F-6
Cmpr2 Val page C-67, D-4, F-6
Cmpr3 Parm page C-64, D-4, F-5
Cmpr3 Type page C-66, D-4, F-6
Cmpr3 Val page C-67, D-4, F-6
Cmpr4 Parm page C-65, D-4, F-5
Cmpr4 Type page C-66, D-4, F-6
Cmpr4 Val page C-67, D-4, F-6
Cntr1 Cnt page C-72, D-5, F-6
Cntr1 Trig page C-72, D-5, F-6
Cntr2 Cnt page C-72, D-5, F-6
Cntr2 Trig page C-72, D-5, F-6
Cntr3 Cnt page C-72, D-5, F-7
Cntr3 Trig page C-72, D-5, F-7
Cntr4 Cnt page C-73, D-5, F-7
Cntr4 Preset page C-73, D-5, F-7
Cntr4 Trig Dn page C-73, D-5, F-7
Cntr4 Trig Up page C-73, D-5, F-7
Cntrl Latch page C-54, D-3, F-4
Configuration page 2-3
Contrast Value page 8-6, C-82, D-6, F-8
Control Parameters
CP-201 page 6-6, 6-20, C-41, D-1, F-1
CP-202 page 5-34, 5-40, 5-44, C-41, D-1, F-1
CP-203 page \(\mathrm{C}-41, \mathrm{D}-1, \mathrm{~F}-1\)
CP-207 page \(\mathrm{C}-41, \mathrm{D}-1, \mathrm{~F}-1\)
CP-208 page C-42, D-1, F-1
CP-209 page C-42, D-1, F-1
CP-210 page C-42, D-1, F-1
CP-211 page \(\mathrm{C}-42, \mathrm{D}-1, \mathrm{~F}-1\)
CP-212 page \(\mathrm{C}-43, \mathrm{D}-1, \mathrm{~F}-1\)
CP-220 page C-43, D-1, F-1
CP-221 page C-43, D-1, F-1
CP-222 page C-43, D-1, F-1
CP-230 page \(\mathrm{C}-43, \mathrm{D}-1, \mathrm{~F}-1\)
CP-235 page C-43, D-1, F-1
CP-240 page \(\mathrm{C}-44, \mathrm{D}-1, \mathrm{~F}-1\)
CP-241 page C-44, D-1, F-1
CP-242 page C-44, D-1, F-1
CP-243 page \(\mathrm{C}-44\), \(\mathrm{D}-1, \mathrm{~F}-1\)
CP-244 page C-44, D-1, F-1
CP-250 page C-44, D-1, F-1
CP-260 page C-45, D-1, F-2
CP-261 page C-45, D-1, F-2
CP-264 page C-45, D-1, F-2
CP-265 page \(\mathrm{C}-45\), D-1, F-2
CP-266 page C-45, D-1, F-2
CP-269 page C-46, D-1, F-2
\begin{tabular}{|c|c|}
\hline CP-271 page C-46, D-1, F-2 & CP-368 page C-59, D-3, F-5 \\
\hline CP-272 page C-46, D-1, F-2 & CP-369 page C-59, D-4, F-5 \\
\hline CP-273 page C-46, D-1, F-2 & CP-370 page C-59, D-4, F-5 \\
\hline CP-276 page C-46, D-1, F-2 & CP-371 page C-60, D-4, F-5 \\
\hline CP-277 page C-47, D-2, F-2 & CP-372 page C-60, D-4, F-5 \\
\hline CP-278 page C-47, D-2, F-2 & CP-373 page C-60, D-4, F-5 \\
\hline CP-279 page C-47, D-2, F-2 & CP-374 page C-60, D-4, F-5 \\
\hline CP-280 page C-47, D-2, F-2 & CP-378 page C-60, D-4, F-5 \\
\hline CP-281 page C-48, D-2, F-2 & CP-379 page C-61, D-4, F-5 \\
\hline CP-282 page C-48, D-2, F-2 & CP-380 page C-63, D-4, F-5 \\
\hline CP-283 page 8-10, C-48, D-2, F-3 & CP-381 page C-64, D-4, F-5 \\
\hline CP-285 page C-48, D-2, F-3 & CP-382 page C-64, D-4, F-5 \\
\hline CP-286 page C-49, D-2, F-3 & CP-383 page C-65, D-4, F-5 \\
\hline CP-287 page C-49, D-2, F-3 & CP-386 page C-65, D-4, F-6 \\
\hline CP-288 page 8-10, C-49, D-2, F-3 & CP-387 page C-65, D-4, F-6 \\
\hline CP-300 page C-49, D-2, F-3 & CP-388 page C-66, D-4, F-6 \\
\hline CP-301 page C-49, D-2, F-3 & CP-389 page C-66, D-4, F-6 \\
\hline CP-302 page C-50, D-2, F-3 & CP-392 page C-67, D-4, F-6 \\
\hline CP-303 page C-50, D-2, F-3 & CP-393 page C-67, D-4, F-6 \\
\hline CP-304 page C-50, D-2, F-3 & CP-394 page C-67, D-4, F-6 \\
\hline CP-307 page C-50, D-2, F-3 & CP-395 page C-67, D-4, F-6 \\
\hline CP-308 page C-50, D-2, F-3 & CP-396 page C-67, D-4, F-6 \\
\hline CP-311 page C-50, D-2, F-3 & CP-397 page C-68, D-4, F-6 \\
\hline CP-312 page 5-44, C-51, D-2, F-3 & CP-398 page C-68, D-4, F-6 \\
\hline CP-321 page C-51, D-2, F-3 & CP-399 page C-68, D-4, F-6 \\
\hline CP-323 page C-51, D-2, F-3 & CP-400 page 5-8, C-68, D-4, F-6 \\
\hline CP-325 page C-51, D-2, F-3 & CP-401 page 5-8, C-68, D-4, F-6 \\
\hline CP-326 page C-51, D-2, F-3 & CP-402 page C-68, D-4, F-6 \\
\hline CP-327 page C-51, D-2, F-3 & CP-403 page C-69, D-4, F-6 \\
\hline CP-328 page C-52, D-2, F-3 & CP-405 page C-69, D-4, F-6 \\
\hline CP-329 page C-52, D-2, F-3 & CP-406 page C-70, D-4, F-6 \\
\hline CP-331 page C-52, D-2, F-3 & CP-407 page C-70, D-5, F-6 \\
\hline CP-332 page C-52, D-2, F-3 & CP-408 page C-70, D-5, F-6 \\
\hline CP-333 page C-52, D-2, F-4 & CP-410 page C-70, D-5, F-6 \\
\hline CP-335 page C-53, D-3, F-4 & CP-411 page C-70, D-5, F-6 \\
\hline CP-336 page C-53, D-3, F-4 & CP-412 page C-71, D-5, F-6 \\
\hline CP-337 page C-53, D-3, F-4 & CP-413 page C-71, D-5, F-6 \\
\hline CP-338 page C-53, D-3, F-4 & CP-414 page C-71, D-5, F-6 \\
\hline CP-339 page C-53, D-3, F-4 & CP-415 page C-71, D-5, F-6 \\
\hline CP-340 page C-54, D-3, F-4 & CP-416 page C-71, D-5, F-6 \\
\hline CP-341 page C-54, D-3, F-4 & CP-417 page C-71, D-5, F-6 \\
\hline CP-342 page C-54, D-3, F-4 & CP-420 page C-72, D-5, F-6 \\
\hline CP-343 page C-55, D-3, F-4 & CP-421 page C-72, D-5, F-6 \\
\hline CP-344 page C-55, D-3, F-4 & CP-422 page C-72, D-5, F-6 \\
\hline CP-345 page C-55, D-3, F-4 & CP-423 page C-72, D-5, F-6 \\
\hline CP-346 page C-55, D-3, F-4 & CP-424 page C-72, D-5, F-7 \\
\hline CP-347 page C-55, D-3, F-4 & CP-425 page C-72, D-5, F-7 \\
\hline CP-348 page C-56, D-3, F-4 & CP-426 page C-73, D-5, F-7 \\
\hline CP-349 page C-56, D-3, F-4 & CP-427 page C-73, D-5, F-7 \\
\hline CP-350 page C-56, D-3, F-4 & CP-428 page C-73, D-5, F-7 \\
\hline CP-351 page 5-29, C-56, D-3, F-4 & CP-429 page C-73, D-5, F-7 \\
\hline CP-352 page 5-29, C-56, D-3, F-4 & CP-430 page C-73, D-5, F-7 \\
\hline CP-353 page 5-29, C-56, D-3, F-4 & CP-431 page C-73, D-5, F-7 \\
\hline CP-355 page C-57, D-3, F-5 & CP-432 page C-74, D-5, F-7 \\
\hline CP-356 page C-57, D-3, F-5 & CP-433 page C-74, D-5, F-7 \\
\hline CP-357 page C-57, D-3, F-5 & CP-434 page C-74, D-5, F-7 \\
\hline CP-358 page C-57, D-3, F-5 & CP-435 page C-74, D-5, F-7 \\
\hline CP-359 page C-57, D-3, F-5 & CP-436 page C-74, D-5, F-7 \\
\hline CP-361 page C-57, D-3, F-5 & CP-437 page C-75, D-5, F-7 \\
\hline CP-364 page C-58, D-3, F-5 & CP-438 page C-75, D-5, F-7 \\
\hline CP-365 page C-58, D-3, F-5 & CP-439 page C-75, D-5, F-7 \\
\hline CP-366 page C-58, D-3, F-5 & CP-440 page C-75, D-6, F-7 \\
\hline CP-367 page C-58, D-3, F-5 & CP-441 page C-75, D-6, F-7 \\
\hline
\end{tabular}
CP-442 page C-75, D-6, F-7
CP-443 page C-76, D-6, F-7
CP-444 page C-76, D-6, F-7
CP-445 page C-76, D-6, F-7
CP-446 page C-76, D-6, F-7
CP-449 page C-76, D-6, F-7
CP-450 page 8-10, 8-11, C-78, D-6, F-7
CP-451 page C-78, D-6,
CP-452 page 8-11, C-78, D-6, F-7
CP-453 page 8-10, C-79, D-6, F-7
CP-454 page 8-10, C-79, D-6, F-7
CP-455 page 8-1, C-79, D-6, F-7
CP-456 page 8-10, C-80, D-6, F-7
CP-460 page 8-17, C-80, D-6, F-8
CP-461 page 8-17, C-80, D-6, F-8
CP-462 page 8-17, C-80, D-6, F-8
CP-463 page 8-17, C-81, D-6, F-8
CP-468 page 8-18, C-81, D-6, F-8
CP-469 page 8-18, C-81, D-6, F-8
CP-470 page 8-1, C-81, D-6, F-8
CP-471 page 8-18, C-81, D-6, F-8
CP-472 page 8-18, C-82, D-6, F-8
CP-473 page 8-18, C-82, D-6, F-8
CP-474 page 8-6, C-82, D-6, F-8
CP-475 page 8-6, C-82, D-6, F-8
CP-478 page 6-20, C-82, D-6, F-8
CP-479 page 6-2, C-83, D-6, F-8
CP-480 page C-83, D-6, F-8
CP-481 page C-83, D-7, F-8
CP-482 page C-83, D-7, F-8
CP-483 page C-84, D-7, F-8
CP-484 page C-84, D-7, F-8
CP-485 page C-84, D-7, F-8
CP-486 page C-84, D-7, F-8
CP-487 page C-84, D-7, F-8
CP-488 page C-84, D-7, F-9
CP-489 page C-85, D-7, F-9
CP-490 page 8-4, C-85, D-7, F-9
CP-491 page 8-20, 8-21, C-85, D-7, F-9
CP-492 page 8-6, C-85, D-7, F-9
CP-495 page C-85, D-7, F-9
CP-496 page C-85, D-7, F-9
CP-497 page D-7, F-9
CP-49 page D-7, F-9
CP-499 page D-7, F-9
CP-500 page D-7, F-9
CP-501 page D-7, F-9
CP-502 page D-7, F-9
CP-503 page D-7, F-9
CP-504 page D-7, F-9
CP-505 page D-7, F-9
CP-506 page D-7, F-9
CP-507 page D-7, F-9
CP-508 page D-7, F-9
CP-509 page D-7, F-9
CP-510 page D-7, F-9
CP-511 page D-7, F-9
CP-512 page D-7, F-9
CP-513 page D-8, F-9,
CP-514 page D-8, F-9
CP-515 page D-8, F-9
CP-540 page D-8, F-9,
CP-541 page D-8, F-9
C-

CP-542 page D-8, F-9
CP-543 page D-8, F-9
CP-544 page D-8, F-9
CP-545 page D-8, F-10
CP-546 page D-8, F-10
CP-547 page D-8, F-10
CP-548 page D-8, F-10
CP-549 page D-8, F-10
CP-550 page D-8, F-10
CP-551 page D-8, F-10
CP-552 page D-8, F-10
CP-553 page D-8, F-10
CP-554 page D-8, F-10
CP-555 page D-8, F-10
CP-556 page D-8, F-10
CP-557 page D-8, F-10
CP-558 page D-8, F-10
CP-559 page D-8, F-10
CP-560 page D-8, F-10
CP-561 page D-8, F-10
CP-562 page D-8, F-10
CP-563 page D-8, F-10
CP-564 page D-8, F-10
CP-565 page D-8, F-10
CP-566 page D-8, F-10
CP-567 page D-9, F-10
CP-568 page D-9, F-10
CP-569 page D-9, F-10
CP-570 page D-9, F-10
CP-571 page D-9, F-10
CP-572 page D-9, F-10
CP-573 page D-9, F-10
CP-574 page D-9, F-10
CP-575 page D-9, F-10
CP-576 page D-9, F-10
CP-577 page D-9, F-11
CP-578 page D-9, F-11
CP-579 page D-9, F-11
CP-580 page D-9, F-11
CP-581 page D-9, F-11
CP-582 page D-9, F-11
CP-583 page D-9, F-11
CP-584 page D-9, F-11
CP-585 page D-9, F-11
CP-586 page D-9, F-11
CP-587 page D-9, F-11
CP-588 page D-9, F-11
CP-589 page D-9, F-11
CP-590 page D-9, F-11
CP-591 page D-9, F-11
CP-592 page D-9, F-11
CP-593 page D-9, F-11
CP-594 page D-9, F-11
CP-595 page D-9, F-11
CP-596 page D-9, F-11
CP-597 page D-10, F-11
CP-598 page D-10, F-11
CP-599 page D-10, F-11
CP-600 page D-10, F-11
CP-601 page D-10, F-11
CP-602 page D-10, F-11
CP-603 page D-10, F-11
CP-604 page D-10, F-11


Copy Dest 1 page C-68, D-4, F-6
Copy Dest 2 page C-68, D-4, F-6
Copy Source 1 page C-67, D-4, F-6
Copy Source 2 page C-68, D-4, F-6
CRC Enable page 8-18, C-81, D-6, F-8
Cust Alm Msk page C-61, D-4, F-5
Custom Alms page 6-14, C-10, E-2, G-4

\section*{D}

Dancer Auth page C-52, D-2, F-3
Dancer Bits page 6-16, 8-16, 8-17, C-13, E-2, G-5
Dancer Content Measurement page 5-27
Dancer Ctnt page 6-16, 8-16, C-13, E-2, G-6
Dancer Gain page 5-56, C-5, D-2, F-3
Dancer SP page C-44, D-1, F-1
Dancer State page C-11, E-2, G-4
Dancer Trim page 6-6, C-14, E-2
Dancer Volts page 6-16, 8-16, 8-17, C-13, E-2, G-5
Data Length Error page I-3
Dcl Rt HStp page C-50, D-2, F-3
Dcl Rt Jog page C-44, D-1, F-1
Dcl Rt RUN page C-50, D-2, F-3
Dcl Tm Drct page 5-44, C-51, D-2, F-3
Dcl Tm High page H-1
Dcl Tm HStp page C-50, D-2, F-3
Dcl Tm Jog page C-44, D-1, F-1
Dcl Tm RUN page C-50, D-2, F-3
Default Set page H-1
Defaults Loaded page I-2
Defaults Set page H-1
Device Address page 8-18, C-81, D-6, F-8
Device Alms page 8-20, C-39, E-4, G-8
DeviceNet page 2-25
DI \(7 . .0\) page \(6-15,8-11, \mathrm{C}-16, \mathrm{E}-3, \mathrm{G}-7\)
DI 1 Shot page C-68, D-4, F-6
DI \(15 . .8\) page \(6-15,8-11, \mathrm{C}-17, \mathrm{E}-3, \mathrm{G}-7\)
DI Set page C-69, D-4, F-6
Diag DAC Bits page 8-10, C-79, D-6, F-7
Diag DAC Test page 8-10, C-79, D-6, F-7
Diag DAC Volts page 8-10, C-79, D-6, F-7
Diag DO page 8-11, C-78, D-6, F-7
Diag DO Shift page C-78, D-6
Diag Rmp Tm page 8-10, C-80, D-6, F-7
Diagnostics En page 8-10, 8-11, C-78, D-6, F-7
Divide By 0 page \(\mathrm{H}-1\)
Divide by Zero page I-2
DN Baud Rate page C-75, D-5, F-7
DN MAC ID page C-75, D-5, F-7
DN Read Parm 1 page C-74, D-5, F-7
DN Read Parm 2 page C-74, D-5, F-7
DN Read Parm 3 page C-74, D-5, F-7
DN Read Parm 4 page C-75, D-5, F-7
DN Write Parm 1 page C-73, D-5, F-7
DN Write Parm 2 page C-73, D-5, F-7
DN Write Parm 3 page C-74, D-5, F-7
DN Write Parm 4 page C-74, D-5, F-7
Dncr Ctnt Err page 6-6, 6-16, C-14, E-2, G-6
Dncr Ctnt Full page C-46, D-1, F-2
Dncr Empty Vlts page C-46, D-1, F-2
Dncr Full Volts page C-46, D-1, F-2
Dncr Min Delta page C-55, D-3, F-4
DO 7..0 page \(6-15,8-12, \mathrm{C}-17, \mathrm{E}-3, \mathrm{G}-7\)

DP Present page \(\mathrm{H}-1\)
Dspl Error page H-1

\section*{E}

EEPROM Chip Replacement page 8-33
Error Code Definitions page H-1
Est Max Ln Spd page C-7, E-2, G-4
Ext LineSpd page 6-16, C-14, E-3, G-6
Ext LS Bits page 6-16, 8-16, 8-17, C-14, E-2, G-6
Ext LS Max page C-47, D-2, F-2
Ext LS Min page C-47, D-2, F-2
Ext LS Volts page 6-16, 8-16, 8-17, C-14, E-2, G-6
ExtLSMaxVolts page C-46, D-1, F-2
ExtLSMinVolts page C-47, D-2, F-2

\section*{F}

F-Stop page 2-28
Faults Cleared page I-2
Fax Cover Sheet page N-1
Field Full page H-1
Fixed Dia Sel page C-41, D-1, F-1
Flts Cleared page H-1
Formulas page B-1
Frame Format page 8-18, C-82, D-6, F-8

\section*{G}

Gen Intrpt page H-1
General Data Error page I-1

\section*{H}

H-Stop page 2-32, 2-33
Halt Monitor page H-2

\section*{I}

Illegal Inst page H-2
Inputs
AC Power Input page 2-10
Dancer page 2-18
F-Stop page 2-13
H-Stop page 2-13
Keypad Lockout page 2-15
Line Speed Potentiometer page 2-18
Line Speed Reverse page 2-17
Load page 2-14
Run page 2-14
Setup page 2-15
Spare page 2-14
Unload page 2-13
Unwind Frequency page 2-11
Unwind Jog Forward page 2-15
Unwind Jog Reverse page 2-16
Unwind Under Wrap page 2-17
Web Reset page 2-18
Wind Frequency page 2-12
Wind Jog Forward page 2-16
Wind Jog Reverse page 2-16
Wind Under Wrap page 2-17
Wiring page 2-10
Invalid Cmd page H-2
Invalid Blks page 6-14, C-8, E-2, G-4

Invalid Command PLC page I-2
Invalid Operand PLC page I-2
Invalid Opnd page H-2
Invalid Parm page H-2, I-1
Invalid Serial Comm page I-3

\section*{J}

Jog Forward page 2-37
Jog Loop Mode page C-51, D-2, F-3
Jog Reverse page 2-38
Jog SP page C-44, D-1, F-1

\section*{K}

Keypad Blk Sel page 6-20, C-83, D-6, F-8
KeyPad Lockout page C-18, E-3, G-7
Keypad Operation
Clear Key page 3-3
Code Select Key page 3-3
Enter Key page 3-3
Help Screen Key page 3-3
Increment Scroll Up/Down page 3-3
LCD Screen Display page 3-3
Menu Key page 3-3
Numeric Keys page 3-3
Page Up/Down Keys page 3-3
Parameter Up/Down Keys page 3-3
Status Screen Key page 3-3
Kff Adj Updt page C-54, D-3, F-4
Kff Auto En page C-55, D-3, F-4
Kff Auto Sel page C-55, D-3, F-4
KyPd Lk Mask page C-83, D-6, F-8
KyPd Lockout page H-2

\section*{L}

Last Reset page 8-20, 8-21, C-38, E-4, G-8
Lg Number Parm page C-75, D-6, F-7
Lg Number Units page C-76, D-6, F-7
LgWd Ovfl page H-2
Line Spd RRef page 6-6, C-6, E-2, G-4
Line Spd SP page C-42, D-1, F-1
Line Spd Src page C-41, D-1, F-1
Line Spd SRef page 6-6, C-6, E-2, G-4
Line Speed page 6-6, C-6, E-2, G-3
Load Parms page C-85, D-7, F-9
Load PLC Prgm page D-7, F-9
LoadDiaCalcEn page C-57, D-3, F-5
Lockout During RUN page I-1
Logic Control page 2-27
Logic Inputs page 2-28
Long Word Overflow page I-2
Loop Update page C-54, D-3, F-4
LossOf Clock page H-2
Low Power page H-2
Low Pwr Cntr page 8-20, C-39, E-4, G-8
M
Max Error page H-2, I-2
Max Line Spd page C-42, D-1, F-1
Max LS Alm page C-60, D-4, F-5
Max Res Met page H-2

Max SP Error page H-2
Mem Err Cntr page 8-20, C-40, E-4, G-8
Memory Fail page H-2
Memory Pass page H-2
Memory Error page H-2
Memory Read too Long page I-3
Memory Test page 8-4, C-85, D-7, F-9
Min Error page H-2, I-1
Min Line Spd page C-43, D-1, F-1
Min SP Error page H-2
Minus First page H-3
Misc Alarms page 6-14, C-10, E-2, G-4
Misc Intrpt page 8-20, 8-21, C-38, E-4, G-8
Misc Intrpt Cntr page 8-21, C-40, E-4, G-8
Misc Status page C-9, E-2, G-4
Model \# page 8-22, C-16, E-3, G-7
Monitor Parameters
MP- 01 page 6-9, 8-9, C-1, E-1, G-1
MP- 02 page \(5-20,6-9,8-9, \mathrm{C}-1, \mathrm{E}-1, \mathrm{G}-1\)
MP- 03 page 6-7, 6-9, 8-9, C-1, E-1, G-1
MP- 05 page 6-9, 8-9, C-1, E-1, G-1
MP- 06 page C-1, E-1, G-1
MP- 07 page 6-7, C-2, E-1, G-1
MP- 09 page 6-9, C-2, E-1, G-1
MP- 11 page 6-10, 8-9, C-2, E-1, G-1
MP- 12 page 6-10, 8-9, C-2, E-1, G-1
MP- 13 page 6-8, 6-10, 8-9, C-2, E-1, G-1
MP- 15 page 6-10, 8-9, C-2, E-1, G-2
MP- 16 page C-3, E-1, G-2
MP- 17 page \(6-8, \mathrm{C}-3, \mathrm{E}-1, \mathrm{G}-2\)
MP- 19 page \(8-9, \mathrm{C}-3, \mathrm{E}-1, \mathrm{G}-2\)
MP- 21 page 6-7, C-3, E-1, G-2
MP- 22 page \(5-52, \mathrm{C}-3, \mathrm{E}-1, \mathrm{G}-2\)
MP- 23 page \(5-55,6-7, \mathrm{C}-3, \mathrm{E}-1, \mathrm{G}-2\)
MP- 24 page C-4, E-1, G-2
MP- 25 page 5-52, C-4, E-1, G-2
MP- 26 page 5-55, 6-7, C-4, E-1, G-2
MP- 27 page 5-55, 6-7, 6-11, 8-10, C-4, E-1, G-2
MP- 28 page \(6-11, \mathrm{C}-4, \mathrm{E}-1, \mathrm{G}-3\)
MP- 29 page 6-11, C-4, E-1, G-3
MP- 31 page 6-8, C-5, E-1, G-3
MP- 32 page \(5-53, \mathrm{C}-5, \mathrm{E}-1, \mathrm{G}-3\)
MP- 33 page \(5-53,6-8, \mathrm{C}-5, \mathrm{E}-1, \mathrm{G}-3\)
MP- 34 page C-5, E-1, G-3
MP- 35 page \(5-53, \mathrm{C}-5\), E-1, G-3
MP- 36 page \(6-8, \mathrm{C}-5, \mathrm{E}-1, \mathrm{G}-3\)
MP- 37 page 6-8, 6-11, 8-10, C-6, E-1, G-3
MP- 38 page 6-11, C-6, E-2, G-3
MP- 39 page \(6-11\), C-6, E-2, G-3
MP- 40 page \(6-6\), C-6, E-2, G-3
MP- 41 page 6-6, C-6, E-2, G-4
MP- 42 page 6-6, C-6, E-2, G-4
MP- 43 page C-7, E-2, G-4
MP-48 page 6-20, C-7, E-2
MP- 49 page 6-8, 6-10, 6-17, 6-21, C-7, E-2, G-4
MP- 50 page \(6-6,6-8,6-10,6-17,6-20,6-21,8-10,8-\)
12, C-7, E-2, G-4
MP- 51 page 6-14, 6-20, C-8, E-2, G-4
MP- 52 page \(6-14, \mathrm{C}-8\), E-2, G-4
MP- 53 page 6-14, C-9, E-2, G-4
MP- 54 page 6-14, C-9, E-2, G-4
MP- 55 page 6-14, C-10, E-2, G-4
MP- 56 page 6-14, C-10, E-2, G-4

MP- 58 page \(5-26,5-35,5-57, \mathrm{C}-11, \mathrm{E}-2, \mathrm{G}-4\)
MP- 59 page C-11, E-2, G-5
MP- 60 page C-11, E-2, G-5
MP- 61 page C-11, E-2, G-5
MP- 70 page 6-6, C-12, E-2, G-5
MP- 71 page \(\mathrm{C}-12\), E-2, G-5
MP- 72 page 6-7, 6-17, 6-20, C-13, E-2, G-5
MP- 73 page \(6-8,6-17,6-21, \mathrm{C}-13, \mathrm{E}-2, \mathrm{G}-5\)
MP- 80 page \(6-16,8-16,8-17\), C-13, E-2, G-5
MP- 81 page \(6-16,8-16,8-17\), C-13, E-2, G-5
MP- 82 page 6-16, 8-16, C-13, E-2, G-6
MP- 83 page 6-6, 6-16, C-14, E-2, G-1, G-6
MP- 84 page C-14, E-2, G-6
MP- 86 page 6-16, 8-16, 8-17, C-14, E-2
MP- 87 page \(6-16,8-16,8-17\), C-14, E-2, G-6
MP- 88 page 6-16, 8-16, C-14, E-3, G-6
MP- 90 page \(8-18, \mathrm{C}-14, \mathrm{E}-3\), G-7
MP- 91 page 8-18, 8-19, C-15, E-3, G-7
MP- 94 page \(8-4, \mathrm{C}-15, \mathrm{E}-3, \mathrm{G}-7\)
MP- 95 page 8-4, C-15, E-3, G-7
MP- 96 page \(8-4\), C-15, E-3, G-7
MP- 97 page 8-22, C-16, E-3, G-7
MP- 98 page 8-22, C-16, E-3, G-7
MP- 99 page 8-22, C-16, E-3, G-7
MP-100 page 6-15, 8-11, C-16, E-3, G-7
MP-101 page 6-15, 8-11, C-17, E-3, G-7
MP-102 page 6-15, 8-12, C-17, E-3, G-7
MP-103 page \(8-5, \mathrm{C}-18, \mathrm{E}-3\), G-7
MP-107 page C-18, E-3, G-7
MP-108 page C-18, E-3, G-7
MP-109 page C-18, E-3, G-7
MP-110 page C-19, E-3, G-7
MP-111 page C-19, E-3, G-7
MP-112 page C-20, E-3, G-7
MP-113 page C-20, E-3, G-7
MP-114 page C-21, E-3, G-7
MP-115 page C-22, E-3, G-7
MP-116 page C-23, E-3, G-8
MP-117 page C-24, E-3, G-8
MP-118 page C-24, E-3, G-8
MP-119 page C-25, E-3, G-8
MP-120 page C-25, E-3, G-8
MP-121 page C-26, E-3, G-8
MP-122 page C-26, E-3, G-8
MP-123 page C-27, E-3, G-8
MP-124 page C-27, E-4, G-8
MP-125 page C-28, E-4, G-8
MP-126 page C-29, E-4, G-8
MP-127 page C-30, E-4, G-8
MP-128 page C-31, E-4, G-8
MP-129 page C-32, E-4, G-8
MP-130 page C-32, E-4, G-8
MP-131 page C-33, E-4, G-8
MP-132 page C-34, E-4, G-8
MP-133 page C-35, E-4, G-8
MP-134 page C-36, E-4, G-8
MP-135 page C-37, E-4, G-8
MP-150 page 8-20, 8-21, C-38, E-4, G-8
MP-151 page 8-20, 8-21, C-38, E-4, G-8
MP-152 page 8-20, C-39, E-4, G-8
MP-153 page 8-21, C-39, E-4, G-8
MP-154 page 8-20, C-39, E-4, G-8
MP-155 page 8-20, C-39, E-4, G-8

MP-156 page 8-20, C-40, E-4, G-8
MP-157 page 8-20, C-40, E-4, G-8
MP-158 page 8-21, C-40, E-4, G-8
MP-168 page 8-17, C-40, E-4, G-8 MP-169 page 8-17, C-40, E-4, G-8
Mounting
The CX-1102 page 2-7

\section*{N}

No <END> page H-3
No <END> PLC page I-2
No Cmpr Parm page H-3
No Compare Parm page I-2
NO Resp Time page C-60, D-4, F-5
Norm Pwr Ups page 8-20, C-39, E-4, G-8
Not Allowed page H-3, I-1
Not Processd page H-3
Not Processed Msg page I-3
Not Ready page H-3, I-1
NV RAM Failed page H-3
NV RAM Passed page H-3
NV RAM Test page 8-4, C-15, E-3, G-7

\section*{0}

OK page I-1
Only 1 Page page H-3
Operator Interface page 3-1
Out of Range page I-1
Outputs
Dancer page 2-20
Spare page 2-21
Unwind Control Output page 2-19
Unwind Enable page 2-19
Unwind Error page 2-20
Web Break page 2-21
Wind Control Output page 2-19
Wind Enable page 2-20
Wind Error page 2-20
Wind Roll Full page 2-20
Wiring page 2-19

\section*{P}

Parameter Summary Quick Ref page C-1
Parm Mem Lmt page H-3
Parm Memory Limit page I-1
Parm Transfer Limit Error page I-2
Passed page I-2
PC at Intrpt page 8-21, C-39, E-4, G-8
PLC \(15-8\) page \(\mathrm{C}-19\), E-3, G-7
PLC 23-16 page C-19, E-3, G-7
PLC 31-24 page C-20, E-3, G-7
PLC 39-32 page C-20, E-3, G-7
PLC 47-40 page C-21, E-3, G-7
PLC 55-48 page C-22, E-3, G-7
PLC 63-56 page C-23, E-3, G-8
PLC 71-64 page C-24, E-3, G-8
PLC 79-72 page C-24, E-3, G-8
PLC \(87-80\) page C-25, E-3, G-8
PLC \(95-88\) page C-25, E-3, G-8
PLC 107-100 page C-26, E-3, G-8
PLC 115-108 page C-26, E-3, G-8

PLC 123-116 page C-27, E-3, G-8
PLC 131-124 page C-27, E-4, G-8
PLC 139-132 page C-28, E-4, G-8
PLC 147-140 page C-29, E-4, G-8
PLC 155-148 page C-30, E-4, G-8
PLC 163-156 page C-31, E-4, G-8
PLC 171-164 page C-32, E-4, G-8
PLC 179-172 page C-32, E-4, G-8
PLC 187-180 page C-33, E-4, G-8
PLC 195-188 page C-34, E-4, G-8
PLC 203-196 page C-35, E-4, G-8
PLC 211-204 page C-36, E-4, G-8
PLC 219-212 page C-37, E-4, G-8
PLC Bit Clear page C-70, D-5, F-6
PLC Bit Set page C-70, D-5, F-6
PLC BkUp set page H-3
PLC Default Program Logic page J-1
PLC Dflt set page H-3
PLC Mem Lmt page H-3
PLC Memory Limit page I-2
PLC Mon 1 Val page C-18, E-3, G-7
PLC Mon 2 Val page C-18, E-3, G-7
PLC Monitor 1 page C-69, D-4, F-6
PLC Monitor 2 page C-70, D-4, F-6
PLC Program Commands page K-1
PLC Program Operands page L-1
Power Loss page H-3

\section*{R}

Ramp Thd page C-57, D-3, F-5
Ratio too Hi page \(\mathrm{H}-3\)
Record Format page 8-18, C-81, D-6, F-8
Ref Ramps page C-49, D-2, F-3
RELEASE page 8-22, C-16, E-3, G-7
Res Error page H-4, I-1
REVISION page 8-22, C-16, E-3, G-7
Revision Log page O-1
Rmt Scroll page C-68, D-4, F-6
Rmt Scroll Rate page C-68, D-4, F-6
ROM Failed page H-4
ROM Passed page H-4
ROM Test page 8-4, C-15, E-3, G-7
Run page 2-33
RUN Lockout page H-4

\section*{S}

Save Parms page D-7, F-9
Save PLC Prgm page D-7, F-9
Saved 2 BkUp page H-4
Screen Operation
Help Screen page 3-5, 3-9
Help Screens / Sample page 3-10
Main Menu page 3-5, 3-7
Screen Matrix page 3-5
Status Screen page 3-5, 3-6
Sub-Menu Screen / Samples page 3-8
Sub-Menus
Alarms and Limits page 3-5
Blocks page 3-5
Device Test page 3-5
PLC page 3-5
Scaling page 3-5

Setpoints and Ramps page 3-5
Setup page 3-5
System Monitor page 3-5
Tuning page 3-5
SerCom Char In page 8-18, C-14, E-3, G-7
SerCom Char Out page 8-18, C-82, D-6, F-8
SerCom Errs page 8-5, 8-18, 8-19, C-15, E-3, G-7
Serial Comm Error Code Def page I-1
Serial Communications page 2-22, 7-1
Serial Number page C-85, D-7, F-9
Setpoint \(X\) page 5-34, 6-6, 6-20, C-41, D-1, F-1
Setup State page C-11, E-2, G-5
Sig Fltr Sel page C-56, D-3, F-4
Sig Fltr Tm Const page C-56, D-3, F-4
Sig Polarity page C-12, E-2, G-5
SP too High page H-4
SP too Low page H-4
Specifications page A-3
Speed too Hi page H-4
SRAM Passed page H-4
SRAM Failed page H-4
SRAM Test page 8-4, C-15, E-3, G-7
State
Dancer State page C-11, E-2, G-4
Setup State page C-11, E-2, G-5
System State page C-8, E-2, G-4
Uwnd State page 6-20, C-7, E-2, G-4
Wind State page 6-17, 6-21, C-7, E-2, G-4
Status Line 1 page C-75, D-6, F-7
Status Line 2 page C-75, D-6, F-7
Status Line 3 page C-76, D-6, F-7
Status Line 4 page C-76, D-6, F-7
Status Line 5 page C-76, D-6, F-7
Status Line 6 page C-76, D-6, F-7
Std Alarms page 6-14
Std Alm Msk page C-60, D-4, F-5
Std Alms page C-9, E-2, G-4
Stretch \% page C-43, D-1, F-1
Stretch \% Max page C-43, D-1, F-1
Stretch \% Min page C-43, D-1, F-1
String too long page I-1
System Monitor
Analog Monitor page 6-1
Analog Monitor P 1/1 page 6-16
Control Override page 6-1
Control Overrides P1/4 page 6-17
Control Overrides P2/4 page 6-18
Control Overrides P3/4 page 6-19
Control Overrides P4/4 page 6-20
DIG I/O Monitor page 6-1
DIG I/O Monitor P1/1 page 6-15
Limits and Alarms page 6-1
Limits and Alarms P1/2 page 6-12
Limits and Alarms P2/2 page 6-14
Run Monitor page 6-1
Run Monitor P1/3 page 6-6
Run Monitor P2/3 page 6-7
Run Monitor P3/3 page 6-8
STD Signal Monitor page 6-1
STD Signal Monitor P1/3 page 6-9
STD Signal Monitor P2/3 page 6-10
STD Signal Monitor P3/3 page 6-11
System Monitoring/Monitor Parameters page 6-1

System State page 6-6, 6-17, 6-20, 8-10, 8-12, C-8, E-2, G-4

\section*{T}

Technical Support page ii
Test Module page H-4
Time Base page C-42, D-1, F-1
Tmr1 Delay page C-70, D-5, F-6
Tmr1 on Tm page C-70, D-5, F-6
Tmr2 Delay page C-71, D-5, F-6
Tmr2 on Tm page C-71, D-5, F-6
Tmr3 Delay page C-71, D-5, F-6
Tmr3 on Tm page C-71, D-5, F-6
Tmr4 Delay page C-71, D-5, F-6
Tmr4 on Tm page C-71, D-5, F-6
Tmr4 Time page C-18, E-3, G-7

\section*{\(\mathbf{U}\)}

UImpd Intrpt page H-4
Unit Prs Sel page C-42, D-1, F-1
Unload page 2-29
Unlock Block page C-85, D-7, F-9
Unlock CP A page C-83, D-7, F-8
Unlock CP B page C-83, D-7, F-8
Unlock CP C page C-84, D-7, F-8
Unlock CP D page C-84, D-7, F-8
Unlock CP E page C-84, D-7, F-8
Unlock CP F page C-84, D-7, F-8
Unlock CP G page C-84, D-7, F-8
Unlock CP H page C-84, D-7, F-9
Uwnd Cntrl Lp page 6-7, 6-17, 6-20, C-13, E-2, G-5
Uwnd Cnts page 6-9, 8-9, C-1, E-1, G-1
Uwnd CO Bits page 6-11, C-4, E-1, G-3
Uwnd CO Max Bits page 6-11, C-4, E-1, G-3
Uwnd CO Max Volts page C-48, D-2, F-2
Uwnd CO Mode page C-47, D-2, F-2
Uwnd CO Offset page 8-10, C-48, D-2, F-3
Uwnd CO Plrty page C-48, D-2, F-2
Uwnd CO Volts page 6-11, 8-10, C-4, E-1, G-2
Uwnd Ctnt Prst page C-58, D-3, F-5
Uwnd Ctnt RO page C-59, D-3, F-5
Uwnd Deriv Thd page C-52, D-2, F-3
Uwnd Dia Prst page C-58, D-3, F-5
Uwnd Direct SP page C-43, D-1, F-1
Uwnd Dirn page C-11, E-2
Uwnd Enc Pty page C-45, D-1, F-2
Uwnd Enc RPM page 5-20, 6-9, 8-9, C-1, E-1, G-1
Uwnd Est Ctnt page C-1, E-1, G-1
Uwnd Est Dia page 6-6, C-2, E-1, G-1
Uwnd FFwd page 6-7, C-4, E-1, G-2
Uwnd Gear Rden page C-45, D-1, F-2
Uwnd Hz page 6-7, 6-9, 8-9, C-1, E-1, G-1
Uwnd Intgrl page 5-52, C-4, E-1, G-2
Uwnd Intgrl Lmt page C-57, D-3, F-5
Uwnd Kd page C-51, D-2, F-3
Uwnd Kff page C-3, E-1, G-2
Uwnd Ki page C-51, D-2, F-3
Uwnd Kp page C-51, D-2, F-3
Uwnd Kp-p page C-51, D-2, F-3
Uwnd Max Dia page C-56, D-3, F-4
Uwnd Max Rmp page C-60, D-4, F-5
Uwnd Max RPM page C-52, D-2, F-3
Uwnd Min Delta page C-55, D-3, F-4

Uwnd Min Dia page C-56, D-3, F-4
Uwnd PPR page C-45, D-1, F-2
Uwnd Roll RPM page 6-7, 6-9, 8-9, C-1, C-2, C-3, E-1, G-1
Uwnd Rot page 6-9, C-2, E-1, G-1
Uwnd RR Err page 5-52, 6-7, C-3, E-1, G-2
Uwnd RRef page 6-6, 6-7, C-3, E-1, G-2
Uwnd State page 6-20, C-7, E-2, G-4
Uwnd Trim page 6-7, C-4, E-1, G-2
Uwnd Trim Auth page C-57, D-3, F-5

\section*{V}

Video Mode page 8-6, C-82, D-6, F-8
Video Test page 8-6, C-85, D-7, F-9

\section*{W}

Warranty/Service page Warranty-1
Watch Dog page H-4
WatchDog Cntr page 8-20, C-40, E-4, G-8
Wind Cntrl Lp page 6-8, 6-17, 6-21, C-13, E-2, G-5
Wind Cnts page \(6-10,8-9\), C-2, E-1, G-2
Wind CO Bits page 6-11, C-6, E-2, G-3
Wind CO Max Bits page 6-11, C-6, E-2, G-3
Wind CO Max Volts page C-49, D-2, F-3
Wind CO Mode page C-48, D-2, F-3
Wind CO Offset page 8-10, C-49, D-2, F-3
Wind CO Plrty page C-49, D-2, F-3
Wind CO Volts page 6-8, 6-11, 8-10, C-6, E-1, G-3
Wind Ctnt Prst page C-58, D-3, F-5
Wind Ctnt RO page C-59, D-4, F-5
Wind Deriv Thd page C-53, D-3, F-4
Wind Dia Prst page C-58, D-3, F-5
Wind Direct SP page C-43, D-1, F-1
Wind Dirn page C-11, E-2
Wind Enc Pty page C-46, D-1, F-2
Wind Enc RPM page 6-10, 8-9, C-2, E-1, G-1
Wind Est Ctnt page 6-10, C-3, E-1, G-2
Wind Est Dia page 6-6, C-3, E-1, G-2
Wind FFwd page C-5, E-1, G-3
Wind Gear Rdcn page C-45, D-1, F-2
Wind Hz page 6-8, 6-10, 8-9, C-2, E-1, G-1
Wind Intgrl page 5-56, C-5, E-1, G-3
Wind Intgrl Lmt page C-57, D-3, F-5
Wind Kd page C-53, D-3, F-4
Wind Kff page C-5, E-1, G-3
Wind Ki page C-53, D-3, F-4
Wind Kp page C-53, D-3, F-4
Wind Kp-p page C-52, D-2, F-4
Wind Max Dia page C-56, D-3, F-4
Wind Max Rmp page C-60, D-4, F-5
Wind Max RPM page 5-56, C-53, D-3, F-4
Wind Min Delta page C-55, D-3, F-4
Wind Min Dia page C-56, D-3, F-4
Wind PPR page C-45, D-1, F-2
Wind Roll RPM page 6-10, 8-9, C-2, E-1, G-1
Wind Rot page C-3, E-1, G-2
Wind RR Err page 5-53, 6-8, C-5, E-1, G-3
Wind RRef page 6-6, 6-8, C-5, E-1, G-3
Wind State page 6-17, 6-21, C-7, E-2, G-4
Wind Trim page 6-8, C-5, E-1, G-3
Wind Trim Auth page C-57, D-3, F-5
Wiring page 2-9
Inputs page 2-10

AC Power Input page 2-10
Dancer page 2-18
H-Stop page 2-13
Keypad Lockout page 2-15
Line Speed Potentiometer page 2-18
Line Speed Reverse page 2-17
Load page 2-14
Run page 2-14
Setup page 2-15
Spare page 2-14
Unload page 2-13
Unwind Frequency page 2-11
Unwind Jog Forward page 2-15
Unwind Jog Reverse page 2-16
Unwind Under Wrap page 2-17
Web Reset page 2-18
Wind Frequency page 2-12
Wind Jog Forward page 2-16
Wind Jog Reverse page 2-16
Wind Under Wrap page 2-17
Outputs page 2-19
Dancer page 2-20
Spare page 2-21
Unwind Control Output page 2-19
Unwind Enable page 2-19
Unwind Error page 2-20
Web Break page 2-21
Wind Control Output page 2-19
Wind Enable page 2-20
Wind Error page 2-20
Wind Roll Full page 2-20
Serial Communications page 2-22
Wiring Diagram Examples page M-1
Wrap Pty page 6-6, C-12, E-2, G-5

\section*{Z}

Zero Speed page C-59, D-4, F-5

INDEX-13

\section*{Warranty/Service}

\author{
Service Policy \\ Warranty
}

\section*{SERVICE POLICY}

Contrex, Inc., recognizes that with each sale of its product there are certain product obligations. This document defines the limits of such obligations and provides guidelines for the performance of related services.

\section*{Applicability}

This Service Policy shall apply to all product sales of Contrex, Inc. However, it may be modified by mutual consent. Thus, whenever an accepted proposal contains wording inconsistent with this policy, the proposal will prevail with respect to specific sale or series of sales involved.
Applicability of this policy is also somewhat limited in cases where products are sold to an OEM for resale to user. See paragraph below entitled \(O E M\) Service.

\section*{Service Personnel}

Contrex, Inc., has a staff whose primary responsibility is service - both factory service and field (on-site) service. Personnel of this department are usually available for service on a 24 hour notice. To facilitate quicker handling of service requests, either written or by phone, such requests should be directed to the Contrex, Inc., Technical Services Department.

\section*{Service Charges}

Contrex, Inc., reserves the right to charge for all services performed at the customers request with the exception of factory service performed under warranty. All on-site service is charged at flat-rate per diem rates plus expenses. Any Contrex, Inc., product developing defects as defined in the warranty during its effective period will be repaired or replaced without charge, providing it is shipped, prepaid, to Contrex, Inc., 8900 Zachary Lane North, Maple Grove, Minnesota 55369.

\section*{Spare Parts}

Contrex, Inc., will usually have an adequate inventory of spare parts and circuit boards for all standard products. However, purchasers are encouraged to maintain a nominal supply of spare parts to insure immediate on-site accessibility.

\section*{Instruction Manuals}

Instructions for installation, maintenance and troubleshooting are included in manuals that are provided with the equipment. Repairs may be performed in the field by competent customer personnel; but in order to not invalidate the warranty they must be made in strict accordance with published instructions, and ONLY AFTER obtaining approval of the Technical Service Department (such repairs are usually limited to the replacement of circuit boards and major subassemblies, not the repair of these items).

\section*{OEM Service}

In many instances Contrex, Inc., products are sold to the original equipment manufactures or integrators for inclusion in larger systems. In such cases the obligations of Contrex, Inc., extend only to that original purchaser. It is the latter's responsibility to handle any service required by his customer, the end user. Such problems can usually be solved by field replacement of complete units. OEM's are encouraged to buy and maintain a supply of "loaners" for this purpose. Contrex, Inc., will provide factory overhaul service at nominal charges to support that OEM. Users of Contrex, Inc., products that were acquired as components of larger systems may buy service or spare parts directly from Contrex, Inc., at standard prices, but they must appeal through the OEM for warranty service.

If Contrex, Inc., encounters trouble in the field which appears to be the result of fault or inadequacy of the system, Contrex, Inc., reserves the right to recover service charges from the party that authorized the service activity.

\section*{WARRANTY}

Contrex, Inc., guarantees this device against defects in workmanship and materials for a period of one (1) year from the date of purchase. Any parts or components that fail during the warranty period will be replaced or repaired without charge. This guarantee is void if the device has been damaged by improper installation or operation, tampering, careless handling or accident.

When a device fails to function in accordance with standards set forth in the instruction manual, the purchaser should contact an authorized representative of Contrex, Inc., 8900 Zachary Lane North, Maple Grove, Minnesota 55369. Whether repairs will take place in the field or at the factory will be solely the prerogative of Contrex, Inc.

If inspection reveals defects that are caused by faulty materials or workmanship, Contrex, Inc., reserves the right to either replace the device or rebuild the device using new or refurbished warranted parts and components. In either instance, the device that is returned to the purchaser meets full factory standards for new device performance. If there is less than 90 days remaining on the warranty period at the time of the repair, the warranty will extend to 90 days after the repair.

Parts and services outside the scope of this warranty will be available at Contrex, Inc., current market price.

Contrex's liability for a device or it's use, whether in warranty or not, shall not in any instance exceed the cost of correcting the defects of the device.
Contrex, Inc., assumes no responsibility for damage to property or injuries to persons from improper use of this device.

No express warranties and no implied warranties whether of merchantability or otherwise (except as to title), other than those set forth above, which are expressly made in lieu of all other warranties, shall apply to any devise sold by Contrex, Inc.

Contrex, Inc., reserves the right to change or improve its devices without imposing any obligation upon Contrex, Inc., to make changes or improvements in previously manufactured devices.

This warranty statement is a summary of Contrex, Inc's policy. Further limits of liability are contained in the Contrex, Inc's purchase order acknowledgments and invoices.```


[^0]:    4 = Dancer trims Wind.
    3 = Dancer trims Unwind.
    $2=$ Operate both axis. Dancer trims Wind.
    $1=$ Operate both axis. Dancer trims Unwind.
    $0=$ Direct Mode both axis.

